The Impact of Object-Centric Process Mining on Business Efficiency: A Case Study Approach
DOI:
https://doi.org/10.26034/lu.akwi.2024.6228Keywords:
Object-centric process mining (OCPM), process mining, business process optimization, business efficiency, Celonis, business process management, data modellingAbstract
Although traditional process mining techniques have enabled substantial enhancements in process transparency and optimization, they frequently prove inadequate for capturing the intricacies of actual business processes, which are characterized by multiple interacting entities. OCPM addresses this limitation by allowing a more nuanced and multi-dimensional analysis of processes. By integrating both traditional and object-centric approaches, the study provides a comparative analysis of the performance and utility of each method, highlighting the specific benefits of OCPM in improving process transparency and operational efficiency. The findings reveal that OCPM offers a more comprehensive understanding of complex business operations, which is crucial for enhancing decision-making and achieving better performance outcomes. Additionally, the study outlines the challenges and opportunities of implementing OCPM in real-world settings, emphasizing its practical implications for business process optimization.
References
Aalst, W. van der. (2023). Twin Transitions Powered by Event Data. Using Object-Centric Process Mining to Make Processes Digital and Sustainable. https://publica.fraunhofer.de/handle/publica/450437
Adams, J. N., Park, G., Levich, S., Schuster, D., & van der Aalst, W. M. P. (2022). A Framework for Extracting and Encoding Features from Object-Centric Event Data (arXiv:2209.01219). arXiv. http://arxiv.org/abs/2209.01219
Adams, J. N., & van der Aalst, W. M. P. (2021). Precision and Fitness in Object-Centric Process Mining (arXiv:2110.05375). arXiv. https://doi.org/10.48550/arXiv.2110.05375
Berti, A., Koren, I., Adams, J. N., Park, G., Knopp, B., Graves, N., Rafiei, M., Liß, L., Genannt Unterberg,
L. T., Zhang, Y., Schwanen, C., Pegoraro, M., Van Der Aalst, W. M. P., & Chair of Process and Data Science, RWTH Aachen University. (2023). OCEL (Object-Centric Event Log) 2.0 specification. https://www.ocel-standard.org/2.0/ocel20_specification.pdf
Bolt, A., de Leoni, M., & van der Aalst, W. M. P. (2016). Scientific workflows for process mining: Building blocks, scenarios, and implementation. International Journal on Software Tools for Technology Transfer, 18(6), 607–628. https://doi.org/10.1007/s10009-015-
-5
Celonis moves from 2D to 3D process mining during Celosphere 2022—Techzine Europe. (n.d.). Retrieved 7 August 2024, from https://www.techzine.eu/news/analytics/93727/celonis-moves-from-2d-to-3d-process-mining-during- celosphere-2022/
Https://vdaalst.com/news/post-2022-process-sphere.pdf. (n.d.). Retrieved 7 August 2024, from https://vdaalst.com/news/post-2022-process- sphere.pdf
Van Der Aalst, W., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., Bose, J. C., Van Den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Cos- tantini, N., Curbera, F., Damiani, E., De Leoni, M.,
… Wynn, M. (2012). Process Mining Manifesto. In
F. Daniel, K. Barkaoui, & S. Dustdar (Eds.), Business Process Management Workshops (Vol. 99, pp. 169– 194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28108-2_19
Van Der Aalst, W. M. P. (2019). Object-Centric Process Mining: Dealing with Divergence and Convergence in Event Data. In P. C. Ölveczky & G. Salaün (Eds.), Software Engineering and Formal Methods (Vol. 11724, pp. 3–25). Springer International Publishing. https://doi.org/10.1007/978-3-030-30446-1_1
Van der Aalst, W. M. (2023). Object-centric process mining: unraveling the fabric of real processes. Mathematics, 11(12), 2691.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Frank Morelli, Neža Pintarič, Anton Manfreda, Przemyslaw Radziszewski
This work is licensed under a Creative Commons Attribution 4.0 International License.