Entwicklung eines KI-basierten FAQ-Chatbots für die Hochschule im Bereich Prüfungsangelegenheiten
Keywords:
Adam Optimizer, Angular, Chatbot, Deep Learning, Docker, FAQ-Bot, Flask-Framework, Gunicorn, Hochschulberatung, Keycloak, Künstliche Intelligenz (KI), Machine Learning (ML), MongoDB, Natural Language Processing (NLP), Natural Language Toolkit (NLTK), Neuronale Netze, NGINX-Webserver, Python, PyTorch, Reinforcement Learning, REST-API, Sentence Similarity Model, spaCy, TransformersAbstract
It can be assumed that the use of chatbots will increase enormously in the next few years - not just since "ChatGPT" has been on everyone's lips. This article presents the project initiated by the chairman of the examination board for business informatics at the THM in the course of 2021, which aims to develop an AI-based FAQ chatbot in the field of examination matters. The chatbot was designed to support students with frequently asked questions related to business informatics exam matters. It is envisaged that with the help of machine learning algorithms, the AI-based chatbot will continuously learn and improve its response accuracy and effectiveness. It offers students a simple way to get answers quickly and easily and can also be used 24/7. The integration of the chatbot into the university's website helps to increase the efficiency of student counseling and improve the user experience.References
N. Inerle, T. Ochs und L. Offermanns, „Entwicklung eines FAQ-Chatbots zur Beratung im Hochschulbereich“, Abschlussdokumentation des Master-Entwicklungsprojekts Wirtschaftsinformatik WS21/22 (intern), THM, Friedberg, März 2022
T.-A. Hua, S. Kirchner, S. Sahba und D. Tansel, „KI-basierter FAQ-Chatbot für eine Hochschule im Bereich Prüfungsangelegenheiten“, Abschlussdoku-mentation des Master-Entwicklungsprojekts Wirtschaftsinformatik SoSe22 (intern), THM, Friedberg, Oktober 2022.
S. B. Sonawane, A. S. Badwar, R. H. Dalvi, G. N. More und S. Talekar, „Design of Chatbot System for Student“, International Journal of New Innovations in Engineering and Technology, p. 6, 2020
L. H. Su, T. Dang-Huy, T. Thi-Yen-Linh, N. Thi-Duyen-Ngoc, L. Bao-Tuyen und N. Ha-Phuong-Truc, „Development of an AI Chatbot to Support Admissions and Career Guidance for Universities“, International Journal of Emerging Multidisciplinary Research, Nr. 4, p. 9, 2020.
A. Dietrich, „Chatbots – Wie müssen sie gestaltet sein, um den Anforderungen zu genügen?“, Hochschule Luzern, 29. April 2019. [Online]. https://hub.hslu.ch/retailbanking/chatbots-wie-muessen-sie-gestaltet-sein-um-den-anforderungen-zu-genuegen/. [Zugriff: 30 April 2023].
Y. Altmann, „8 Funktionen, die jeder Chatbot haben sollte“, Userlike UG, 21 Januar 2021. [Online]. https://www.userlike.com/de/blog/chatbot-funktionen. [Zugriff: 26 April 2023].
D. Biswas, „Self-improving Chatbots based on Deep Reinforcement Learning“, towardsdatascience, 14 September 2020. [Online]. https://towardsdata science.com/self-improving-chatbots-based-on-reinforcement-learning-75cca62debce. [Zugriff: 02 Mai 2023].
A. Singh, P. Murugeswari, S. D. P. Ragavendiran, A. Kaur, G. Singh und S. Margabandu, „AI-based Chatbot for Physically Challenged People“, in International Conference on Edge Computing and Applications (ICECAA), Tamilnadu, India, 2022.
M. Karna, D. S. Juliet und R. Joy, „Deep learning based Text Emotion Recognition for Chatbot applications“, in 4th International Conference on Trends in Electronics and Informatics (ICOEI) (48184), Tirunelveli, India, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Harald Ritz, Dogus Tansel
This work is licensed under a Creative Commons Attribution 4.0 International License.