
Entwicklung einer integrierten Microservice-Architektur am Beispiel
von modularisierten RPA-Prozessen

Max-Arthur Klink

Hochschule Pforzheim
Tiefenbronnerstr. 65

75175 Pforzheim
klinkmax@hs-pforzheim.de

Frank Morelli

Hochschule Pforzheim
Tiefenbronner Straße 65

75175 Pforzheim
frank.morelli@hs-pforzheim.de

ABSTRACT
Die vorliegende Ausarbeitung untersucht die Entwicklung einer modularen Microservice-Architektur zur Optimierung von
Robotic Process Automation (RPA). Ziel ist es, Flexibilität, Skalierbarkeit und Wartbarkeit zu verbessern, indem monoli-
thische RPA-Prozesse in unabhängige, wiederverwendbare Microservices aufgeteilt werden. Ein praxisnahes Implemen-
tierungsmodell adressiert dabei zentrale Anforderungen wie Modularität, lose Kopplung und Resilienz. Die Differenzie-
rung zwischen wertgenerierenden und unterstützenden Microservices ermöglicht eine effiziente Prozessgestaltung, wäh-
rend ein zentraler Katalog und Orchestrierungswerkzeuge die Verwaltung und Integration erleichtern. Experteninterviews
lieferten fundierte Einblicke in die Priorisierung relevanter Architekturmerkmale. Die Ergebnisse zeigen, dass die entwi-
ckelte Architektur wesentliche Effizienzgewinne und eine erhöhte Anpassungsfähigkeit ermöglicht. Abschließend wird die
Architektur hinsichtlich zentraler Mehrwerte evaluiert, und es werden konkrete Handlungsempfehlungen für zukünftige
Anwendungen und Erweiterungen gegeben.

SCHLÜSSELWÖRTER
Microservices; Robotic Process Automation (RPA);
Architektur; Modularisierung; Prozessautomatisierung;
Architekturprinzipien; Implementierung.

EINLEITUNG
Die Automatisierung von Geschäftsprozessen durch den
Einsatz von Robotic Process Automation (RPA) ist ein
zentraler und stetig wachsender Bereich in der IT-
Strategie vieler Unternehmen. Durch die Verwendung
dieser Technologie können standardisierbare Prozesse,
welche in der Komplexität variieren, automatisiert wer-
den. Aktuell erfolgt die Analyse und Automatisierung
von Geschäftsprozessen jeweils getrennt voneinander.
Allerdings treten bei einer Vielzahl von Geschäftspro-
zessen Ähnlichkeiten im Hinblick auf Inhalte und
Struktur der darunter liegenden Teilprozesse auf. Dies
führt häufig dazu, dass man innerhalb dieser Prozesse
ähnliche Funktionen bzw. gleiche Bestandteile verwen-
det. Die Automatisierung von Geschäftsprozessen ver-
folgt in diesem Fall einen monolithischen Ansatz. Dies
bedeutet, dass die gesamte Logik und Funktionalität in-
nerhalb jedes einzelnen automatisierten Prozesses inte-
griert ist.
Die monolithische Struktur der aktuellen RPA-Prozesse
bringt verschiedene Herausforderungen mit sich, ins-
besondere hinsichtlich der Prozesswiederverwendbar-
keit und -wartbarkeit. Steigende oder sich ändernde An-
forderungen an die Automatisierung erfordern oft Anpas-
sungen mehrere Komponenten innerhalb eines Prozesses,
wodurch die Aktualisierung komplex und zeitaufwän-
dig ist. Änderungen an einzelnen Bestandteilen können
mehrere Prozesse betreffen, wodurch diese ebenfalls ge-
ändert werden müssen, was zusätzlich die Wartbarkeit
und Flexibilität der Prozesse einschränkt. Dies zeigt den

Bedarf nach einer effizienteren Lösung für die Konzipie-
rung von RPA-Prozessen auf.
Durch die Unterteillung der einzelnen Bestandteile der
Prozesse in unabhängige Microservices lassen sich zu-
künftig Funktionen und Komponenten separat entwi-
ckeln und bereitstellen. Damit soll eine einfachere War-
tung und Aktualisierung der gesamten Prozesslandschaft
erzielt werden, da man Änderungen nur noch in den be-
troffenen Microservices vornehmen muss und nicht in
jedem einzelnen automatisierten Prozess. Die Zielset-
zung des vorliegenden Artikels besteht in der Veran-
schaulichung einer Microservice-Architektur am Bei-
spiel von modularisierten RPA-Prozessen. Der
vorliegende Artikel untersucht die Thematik aus
folgender Forschungsperspektive:

1. Wie lassen sich Microservices katalogisieren?
2. Wie kann eine Microservice-Architektur im

RPA-Umfeld ausgestaltet werden?

ROBOTIC PROCESS AUTOMATION
Definition und Grundlagen
Bei Robotic Process Automation handelt es sich um eine
Art der Prozessautomatisierung. Unter der Prozessauto-
matisierung wird der Einsatz von Software und Techno-
logien zur Automatisierung von Geschäftsprozessen ver-
standen. Das Ziel der Prozessautomatisierung ist die Er-
reichung der Geschäftsziele, die Verbesserung der Ren-
tabilität und der Wettbewerbsfähigkeit der Unternehmen
(SAP o. D.). Der Begriff RPA kam erstmals im Jahr 2000
auf, fand jedoch bis zum Jahr 2012 kaum Verwendung
und erlangte erst dann an Bedeutung (Doguc 2020, S. 470
f.). Im Herbst 2015 befand sich RPA in der Phase der frü-
hen Mehrheit, was bedeutet, dass die Technologie bereits
von einer Vielzahl von Unternehmen eingesetzt wird

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 36

(Willcocks et al. 2015, S. 3; Karnowski 2013, S. 520).
Mit dem Verlauf der Jahre konnte ein signifikantes
Wachstum in diesem Bereich beobachtet werden (Doguc
2020, S. 471). Es gibt eine Vielzahl an Definitionen für
RPA. Der vorliegende Artikel basiert auf folgender Defi-
nition: „Bei RPA handelt es sich um eine Technologie,
die es Unternehmen ermöglicht, repetitive, zeitaufwän-
dige und regelbasierte Aufgaben zu automatisieren,
wodurch menschliche Mitarbeiter entlastet und die Effi-
zienz gesteigert wird.“ RPA trägt so zur Verbesserung
der Geschäftsprozesse und zur Erreichung strategischer
Unternehmensziele bei. Bei RPA handelt es sich um ein
Software-Programm mit dem Softwareroboter program-
miert werden können (Institute for Robotic Process Au-
tomation & Artificial Intelligence o. D.; Gartner o.
D.b; PWC South Africa o. D.; Langmann und Turi 2021,
S. 6). Diese Softwareroboter interagieren dabei mit der
Präsentationsschicht anderer Programme. Sie verhalten
sich dabei wie ein Mensch gegenüber der grafischen Be-
nutzeroberfläche des Systems, ohne andere Schichten zu
verwenden (Willcocks et al. 2015, S. 7 f.; van der Aalst et
al. 2018, S. 269). Moderne RPA-Lösungen erweitern zu-
sätzlich ihren Anwendungsbereich, indem sie neben der
grafischen Oberflächenautomatisierung auch die Integra-
tion von API-Aufrufen ermöglichen. Durch die Verknüp-
fung mit Backend-Systemen über APIs lassen sich so-
wohl Front-End- als auch Back-End-Automatisierungen
realisieren. Eine Studie hat zudem gezeigt, dass die Ver-
wendung von APIs im RPA-Kontext gegenüber der rei-
nen GUI-Automatisierung zu empfehlen ist, da unter an-
derem die Ausführungsgeschwindigkeit gesteigert wer-
den kann (Průcha und Skrbek 2022, S. 260-262, 264, 267-
272; AWS o. D.).
Der Abbildung 1 kann das RPA-Schichtmodell entnom-
men werden. Entsprechend der in der Literatur darge-
stellten Ansichten operiert RPA im Gegensatz zu anderen
Automatisierungslösungen prinzipiell auf der Präsentati-
onsschicht. Es ist jedoch anzumerken, dass insbesondere
neuere RPA-Systeme erweiterte Funktionen bieten, die
auch die Interaktion mit anderen Schichten, wie der Ge-
schäftslogik- und Datenebene, ermöglichen (Drawehn et
al. 2022, S. 14).

Abbildung 1: RPA-Schichtmodell Quelle: Eigene Darstellung
in Anlehnung an Dey und Das 2019, S. 222; Drawehn et al.

2022, S. 14

Indem die RPA-Software auf den bestehenden Systemen

aufsetzt, kann es auf der vorhandenen Infrastruktur im-
plementiert werden, ohne dass Änderungen am IT-
Backend erforderlich sind (Willcocks et al. 2015, S. 7;
Berruti et al. 2017). Daraus folgt, dass RPA auf einen so-
genannten „outside-in“ Ansatz setzt, da das Informati-
onssystem unverändert bleibt. In einem klassischen
„inside-out“ Ansatz, wären Änderungen am Informati-
onssystem die Folge (van der Aalst et al. 2018, S.
 269, 271). Weiterhin lässt sich RPA dem
"Lightweight IT“-Konzept zuordnen: Hierunter fallen
IT-Systeme, die unkompliziert auf die Bedürfnisse
erfahrener Nutzer reagieren, ohne auf komplexe und
umfassende IT-Infrastrukturen angewiesen zu sein (By-
gstad 2017, S. 182; Willcocks et al. 2015, S. 21 f.). In-
nerhalb von RPA kann man zwischen drei Typen unter-
scheiden: Attended, Unattended und Hybrides RPA
(Axmann und Harmoko 2020, S. 559).
Bei Attended RPA, auch als Robotic Desktop Automa-
tion (RDA) bezeichnet, kann ein Software-Roboter direkt
auf dem Desktop des Benutzers ausgeführt werden. Der
Benutzer ist in der Lage den Roboter zu starten, zu über-
wachen und mit ihm über einen Bildschirm zu intera-
gieren. Der Roboter seinerseits kann mit verschiedenen
Anwendungen interagieren wodurch sich verschiedene
Arbeitsschritte automatisieren lassen. Attended RPA fun-
giert wie ein persönlicher Assistent, weil es bestimmte
Aufgaben übernimmt und ausführt. Ein Nachteil von At-
tended RPA besteht darin, dass der Roboter den Com-
puter des Users benötigt. Während der Programmlauf-
zeit ist dieser dann nicht mehr in der Lage, seinen Com-
puter anderweitig zu verwenden (Langmann und Turi
2021, S. 6; Axmann und Harmoko 2020, S. 559). Eine Un-
tersuchung von Anwendungsszenarien ergibt, dass Aten-
ded RPA primär bei Prozessen zum Einsatz kommt, die
nicht komplett regelbasiert automatisierbar sind bzw. an
verschiedenen Stellen menschliche Entscheidungen be-
nötigen. Ein Anwendungsfall für Attended RPA ist z.B.
die Wirtschaftsprüfung. Innerhalb dieser sind viele Pro-
zesse unstrukturiert und kommen deshalb nicht ohne
menschliche Interaktion aus (Zhang et al. 2021, S. 5, 7
f.).
Im Gegensatz zu Attended RPA bezeichnet Unattended
RPA einen RPA-Typen, bei dem die Software Roboter
statt auf dem Desktop des Benutzers, auf einem Server
bzw. auf einer virtuellen Maschine im Hintergrund aus-
geführt werden. Sie können unabhängig von Menschen
arbeiten und benötigen meistens keine direkte Interaktion
mit diesen. Durch ihre Unabhängigkeit lassen sie sich
auf Basis von einer vordefinierten Uhrzeit oder eines
festgelegten Triggers, wie der Erhalt einer E-Mail, auto-
matisch triggern. Unattended RPA-Roboter werden mit-
hilfe eines Orchestrators gesteuert und überwacht, eine
Schlüsselkomponente von RPA-Systemen. Beleuchtet
man die Anwendungsfälle für Unattended RPA näher, so
eignet sich dieser RPA-Typ besonders gut für regelba-
sierte Anwendungsfälle. So lassen sich Anwendungs-
fälle lassen sich im Rechnungswesen & Controlling
Bereich finden, wenn z.B. per E-Mail erhaltene Rech-
nungen automatisch nach gewissen Regeln verbucht wer-
den sollen (Zhang et al. 2021, S. 5, 7 f.; Langmann und
Turi 2021, S. 6 f.; Axmann und Harmoko 2020, S. 559;

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 37

Choi et al. 2021, S. 3 f.)
Bei Hybridem RPA handelt es sich um eine Kombination
von Attended und Unattended RPA. Es eignet sich vor-
wiegend für komplexe Prozesse, bei denen ein Teil voll-
automatisiert ohne menschliche Interaktion abläuft, wäh-
rend der andere Teil des Prozesses auf die Interaktion
mit einem Menschen angewiesen ist (Axmann und
Harmoko 2020, S. 559 f.).
Generell besteht ein RPA-System i.d.R. aus drei Haupt-
komponenten, dem RPA Studio, dem RPA Orchestrator
und den RPA-Robotern. Der Aufbau eines solchen Sys-
tems entnommen werden. Das RPA Studio repräsentiert
die Entwicklungsumgebung von RPA. Dort lassen sich
die Prozesse, welche in Form eines Bots ausgeführt
werden sollen, modellieren/ entwickeln und konfi-
gurieren werden. Ist ein Bot fertig entwickelt, wird
er dem Orchestrator übergeben. Der Orchestrator dient
als zentrale Steuerungseinheit für die Verwaltung der
Bots. Konkret ist er für die Planung, die Ausführung
und das Monitoring der Bots zuständig. Der Orchestrator
bietet in der Regel auch eine Schnittstelle, über die An-
wendungen von Drittanbietern die RPA-Roboter nut-
zen können. Die Roboter führen dann die ihnen zugewie-
senen Aufgaben aus (Choi et al. 2021, S. 4).

Abbildung 2 RPA-System Aufbau Quelle: Eigene Darstellung

in Anlehnung an Choi et al. 2021, S. 4

Einsatzbereiche
RPA findet in einer Vielzahl von Bereichen Verwen-
dung. Generell ist der Einsatz von RPA besonders ge-
eignet für die Automatisierung von Geschäftsprozessen,
die sich durch Regelmäßigkeit und Routinetätigkeiten
auszeichnen. Weiter ist RPA geeignet für Prozesse, die
strukturierte Daten verarbeiten, durch ein hohes Volumen
geprägt sind und eine Interaktion mit mehreren IT-
Systemen über die Oberfläche erfordern. RPA ist somit
besonders für Prozesse geeignet, die keine Kreativität
oder Interpretation erfordern (Da Costa et al. 2022, S. 8;
Aguirre und Rodriguez 2017, S. 65 f., 70).
RPA findet in vielen unterschiedlichen Branchen An-
wendung. Besonders häufig wird RPA in Bereichen
wie IT, Personalwesen/HR, Versicherung, Buchhaltung
und Finanzen, Einzelhandel sowie in der Wirtschafts-
prüfung eingesetzt (Santos et al. 2020, S. 406; Kokina
und Blanchette 2019, S. 1; Moffitt et al. 2018, S. 1, 9;
Zhang et al. 2021, S. 2; Madakam et al. 2019, S. 1, 13).
Die Aufgaben, die RPA dabei ausführt, sind oft das sys-
tematische Erfassen und Überprüfen von Daten, das Be-

arbeiten und Umstrukturieren von Dateien, das Anpas-
sen von Formaten sowie das Synchronisieren und Ab-
gleichen von Daten über mehrere Plattformen hinweg
(Alberth und Mattern 2017, S. 58). Die aufgeführten
Einsatzbereiche zeigen, dass RPA bereits eine tragende
Rolle in der Optimierung und Automatisierung von Ge-
schäftsprozessen einnimmt. Die Weiterentwicklung der
RPA-Funktionalität erfolgt laufend, was unter anderem
durch die Innovationen und Entwicklungen innerhalb
des Informationstechnologiesektors vorangetrieben wird.
Als Aktuelle Trends lassen sich folgende Trends ermit-
teln: Artificial Intelligence (AI) bzw. künstliche In-
telligenz (KI), vermag die Effizienz zu steigern,
indem die Integration von KI-Technologien RPA auto-
nomer und dynamischer ausgestaltet. RPA kann hier-
durch selbstständiger auf unterschiedliche Situationen
reagieren und Abläufe kombinieren. Ein Beispiel hier-
für ist die Verbesserung der Interaktion mit mensch-
lichen Benutzern, indem empfangene Nachrichten
korrekt interpretiert und automatisch beantwortet
werden (Hanussek 2019). Weiter kann KI eine Ver-
arbeitung von unstrukturierten Daten die Nutzung von
Spracherkennung, die Verwendung von maschinellem
Lernen und neuronalen Netzen im RPA Kontext ermög-
lichen. Neuronale Netze sind in der Lage, komplexe
Muster in Daten zu erkennen, wodurch sich an-
spruchsvollere Aufgaben automatisieren lassen (Ui-
Path o. D.; Köhler-Schute 2020, S. 29). Ein weiterer
aktueller Trend ist die Verbindung von Process
Mining mit RPA. Die Verwendung von Process Mi-
ning Software, wie z. B. Celonis, kann es Unternehmen
ermöglichen, Prozesse leichter und effizienter zu iden-
tifizieren, die für eine Automatisierung im Kontext von
RPA geeignet sind (Choi et al. 2022, S. 39604,
39611; Celonis o. D.). Ein weiterer aktueller Trend ist
die Untersuchung des Einsatzes von Blockchain
Technologien, z.B. bei Kryptowährungen wie Bitcoin
oder Ethereum. Die Verbindung zu RPA ermöglicht
es, Sicherheits- und Audit-Herausforderungen zu ad-
ressieren (Al-Slais und Ali 2023).

Vorteile und Herausforderungen
RPA hat sich als eine bedeutende Technologie innerhalb
der digitalen Transformation etabliert. Jedoch besitzt
RPA neben zahlreichen Vorteilen auch einige Herausfor-
derungen, die Unternehmen bewältigen müssen, um best-
möglich von RPA zu profitieren.
Einer der wichtigsten Vorteile ist die erhebliche Effi-
zienzsteigerung, die Unternehmen durch die Nutzung
von RPA erreichen können. In einer Fallstudie wurde
analysiert, wie effizient eine Gruppe unter Verwendung
von RPA im Vergleich zu einer Gruppe ohne den Einsatz
von RPA arbeitet. In dem Team, welche RPA-Software
verwendet hat, konnten 21 % mehr Fälle bearbeitet wer-
den als in der Vergleichsgruppe. Entsprechend eröffnet
dies Wertsteigerungspotenziale, indem Mitarbieter die
durch Automatisierung gewonnene Zeit für wichtigere
und komplexere Aufgaben nutzen können. Im Rahmen
der genannten Fallstudie ist allerdings zu ergänzen, dass
die Gruppe mit RPA nicht signifikant schneller waren

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 38

als die ohne RPA (Aguirre und Rodriguez 2017, S. 68-70;
Shidaganti et al. 2021, S. 1). Ein weiterer Vorteil von
RPA für Unternehmen sind die damit verbundenen Kos-
teneinsparungen, welche unter anderem durch die Au-
tomatisierung der Geschäftsprozesse entstehen. Diese
Kosteneinsparungen ergeben sich zum einen daraus, dass
man Mitarbeiter gezielter und effizienter einsetzen kann
aufgrund der Automatisierung von Routinetätigkeiten.
Zusätzliche Einsparungen ergeben sich dadurch, dass
RPA die Fehlerquote bei Aufgaben wie der Dateneingabe
signifikant reduzieren kann. Hierdurch sinken die Fehler-
behebungskosten und zeitgleich steigt die Qualität der
auszuführenden Arbeit (Ivančić et al. 2019, S. 280, 282,
287 ,290; Kirchmer 2017, S. 2 f.; Asatiani und Penttinen
Esko 2016, S. 4). Zusätzlich kann ein Roboter im Gegen-
satz zu einem Mitarbeiter rund um die Uhr (24/7) arbei-
ten. Eine Studie aus dem Jahr 2016 zeigt auf, dass die Kos-
ten für einen RPA-Roboter nur ein Drittel bis ein Fünftel
der Kosten eines Vollzeitmitarbeiters betragen können
(Kroll et al. 2016, S. 12; Asatiani und Penttinen Esko
2016, S. 4). Konkret können Unternehmen mit einer
durchschnittlichen Kosteneinsparung von ca. 25 % rech-
nen. Der Break-Even-Point von RPA wird dabei meistens
schon im ersten Jahr nach der Einführung erreicht, mit ei-
nem potenziellen Return on Investment (ROI) von 30 bis
200 % (Koch und Wildner 2020, S. 214; Lhuer 2016).
Ein weiterer Vorteil von RPA ist die Erhöhung der Com-
pliance. Dies lässt darauf schließen, dass es für Unterneh-
men durch den Einsatz von RPA relativ einfach ist, sich
an vorgegebene Regeln im Unternehmen zu halten und
so ihre Gesamt-Compliance zu verbessern (Ivančić et al.
2019, S. 282). Ein weiterer Vorteil von RPA besteht da-
rin, dass generell keine fortgeschrittenen Programmier-
kenntnisse benötigt werden, um einfache RPA-Roboter
zu erstellen. Hinzu kommt, dass RPA von den Unterneh-
men ohne größere Anpassungen in die aktuelle IT-
Landschaft integriert werden kann, da RPA nur auf dieser
aufsetzt (Langmann und Turi 2021, S. 1, 8, 11).
Trotz der aufgezeigten Vorteile von RPA in Bezug auf
Effizienzsteigerung und Kostenoptimierung sind auch
spezifische Herausforderungen vorhanden. So eignet
sich RPA nicht für alle Prozesse. RPA-Roboter sind nicht
in der Lage, eigenständig Entscheidungen zu treffen. Aus
diesem Grund stellen komplexe, unstrukturierte und stark
variierende Prozesse eine Herausforderung für RPA-
Roboter dar. Daraus kann abgeleitet werden, dass eine
sorgfältige Analyse, Auswahl und Dokumentation der zu
automatisierenden Prozesse innerhalb eines Unterneh-
mens zu Beginn essenziell ist (Choi et al. 2021, S. 2 f.;
Wanner et al. 2019, S. 2, 5; Langmann und Turi 2021, S.
14-16; Brettschneider 2020, S. 1103). Des Weiteren kann
die Instandhaltung der RPA-Roboter für Unternehmen
eine signifikante Herausforderung darstellen. RPA-
Prozesse erfordern eine kontinuierliche Wartung, da
selbst geringfügige Änderungen in den mit dem Prozess
verbundenen Systemen und insbesondere in den Ober-
flächen, oft Anpassungen an den RPA-Robotern not-
wendig machen. Prozesse, die häufige Anpassungen
benötigen, sind besonders fehleranfällig, was zu er-
höhtem Wartungs- und Kostenaufwand führen kann

(Langmann und Turi 2021, S. 14; Santos et al. 2020, S.
413). Je mehr Roboter im Einsat sind, desto höher
wird auch der gesamte Wartungsaufwand innerhalb der
RPA-Umgebung für ein Unternehmen (Brettschneider
 2020, S. 1107). Durch die Automatisierung von
Aufgaben, die zuvor von menschlichen Mitarbeitern aus-
geführt wurden, entfällt zukünftig ein Teil dieser
Tätigkeiten aufgrund des Einsatzes von RPA. Da-
raus resultiert eine Herausforderung im Sinne der
Workforce Resilience, d.h. des Widerstands der Mit-
arbeiter gegenüber dieser Technologie. Es besteht
die Gefahr, dass diese befürchten, durch RPA
ersetzt zu werden, was zu erhöhten Ängsten hin-
sichtlich Entlassungen führt. Unternehmen müssen
rechtzeitig die Mitarbeiter in den Prozess der RPA-
Einführung einbeziehen und ein geeignetes Change
Management betreiben. Beispielsweise sollten geeig-
nete Lösungswege und Fortbildungsmöglichkeiten auf-
gezeigt werden, um die RPA Einführung nicht zu ge-
fährden (Syed et al. 2020, S. 8; Brettschneider 2020, S.
1104 f.; Santos et al. 2020, S. 414; Köhler-Schute 2020,
S. 22). Weiterhin lässt sich das Management der Skalier-
barkeit als potenzielles Problem identifizieren. So
kann es innerhalb von RPA zu Schwierigkeiten kom-
men, wenn man versucht, eine einzelne Anwendung un-
ternehmensweit auszurollen. Daher sollte bereits zu
Beginn der Einführung ein Konzept bezüglich der
Infrastruktur erarbeitet werden, um am Ende die
gewünschte Skalierbarkeit und Stabilität der RPA-
Umgebung erreichen zu können (Syed et al. 2020, S. 12;
Langmann und Turi 2021, S. 61).

MICROSERVICES
Definition und Grundlagen
Viele Unternehmen stehen vor der Herausforderung, dass
ihre IT-Landschaften nicht mehr zeitgemäß sind. Dies
liegt daran, dass sie zu einer Zeit implementiert wurden,
als Aspekte wie Modularisierung noch nicht im Fokus
standen. Dies erfordert eine Veränderungsbereitschaft,
um wettbewerbsfähig bleiben zu können (Dowalil 2018,
S. 17 f.; Habibullah et al. 2019, S. 1 f.). Dieser Wandel
spiegelt sich insbesondere in der Entwicklung der Soft-
ware-Architektur wider. In der Vergangenheit waren
monolithische Architekturen, bei denen die gesamte
Software als ein einziger großer Codeblock umge-
setzt wurde, weitverbreitet. Dieser umfangreiche
Block erfüllte funktionale und nicht-funktionale Anfor-
derungen, was als Resultat eine enge Verknüpfung zwi-
schen den einzelnen Bestandteilen mit sich brachte.
Diese Herangehensweise wird jedoch, besonders bei zu-
nehmender Komplexität, unwirtschaftlich, kosteninten-
siv und zeitaufwändig. Der Grund dafür liegt in erhöhten
Ressourcenaufwänden und verlängerten Entwicklungs-
zeiten. Entsprechend wurden modulare Architekturen
entwickelt, um größere Flexibilität und Skalierbarkeit zu
erzielen (Yousif 2016, S. 4; Kalske et al. 2018, S.
32 f.). In diesem Zusammenhang spielte die "Service-
Oriented Architecture" (SOA) eine bedeutende Rolle.
SOA ist eine Architekturform, bei der die Systemland-
schaft in einzelne, unabhängige Services zerlegt wird.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 39

Jeder Service ist dabei genau für eine Geschäfts-
aufgabe zuständig. Diese Services werden innerhalb
eines Netzwerks verteilt und kommunizieren über defi-
nierte Schnittstellen, wodurch eine lose Kopplung zwi-
schen ihnen entsteht. Unter einer losen Kopplung wird
die Minimierung der Verbindungen zwischen einzel-
nen Softwarekomponenten verstanden. Dies impliziert,
dass zwischen den verschiedenen Bestandteilen einer
Software möglichst wenige Abhängigkeiten bestehen
sollten, damit z. B. in Fehlerfällen nicht das ganze
System betroffen ist. Aufbauend auf den Konzepten
von SOA haben sich Microservices als eine modulare
Unterart bzw. als ein spezifischer Typ einer "Service-
Oriented Architecture" entwickelt. (Dowalil 2018, S.
25-29, 121 f., 196; Newman 2020, S. 1). Heutzutage
gewinnen Microservices zunehmend an Popularität und
werden bereits von einer Vielzahl von Unternehmen im-
plementiert (Taibi et al. 2017, S. 23). Wird die
Definition eines Microservices betrachtet, so ist festzu-
stellen, dass bisher keine einheitliche Definition
existiert. Auf Basis der Definitionen von Fowler und
Lewis sowie der Definition von Newman lässt sich
jedoch eine allgemeine Charakterisierung ableiten:
Microservices sind kleine, unabhängige und lose gekop-
pelte Einheiten, die jeweils eine spezifische Funktion
oder Aufgabe erfüllen. Sie kommunizieren über geeig-
nete Schnittstellen miteinander und sind stark gekapselt,
was ihre unabhängige Veröffentlichung und Wartung er-
möglicht. Wenn in einem System mehrere solcher
Microservices zusammenarbeiten, spricht man von
einer Microservice-Architektur. Betrachtet man die
Größe eines Microservices näher, so könnte der Begriff
„Micro“ eine geringe Größe suggerieren. Allerdings gibt
es keine klar definierte Größe für einen Microservice.
Die tatsächliche Größe hängt stark vom jeweiligen
Kontext ab, weshalb ein einzelner Service nicht
zwingend klein sein muss (Fowler und Lewis 2014;
Newman 2020, S. 1, 9 f.; Nadareishvili et al. 2016, S.
65 f.) Abbildung 3 zeigt den beispielhaften Aufbau und
die Funktionsweise einer solchen.

Abbildung 3 Microservice-Architektur Quelle: Eigene Darstel-
lung in Anlehnung an Microsoft Learn o. D., 2023; Lal Sahni

2023
In einer Microservice-Architektur greifen Benutzer über
eine Benutzeroberfläche auf die Software zu, die im Hin-
tergrund über ein API-Gateway mit den benötigten
Microservices kommuniziert. Das API-Gateway leitet
Anfragen weiter und koordiniert die Antworten. Ein Bei-

spiel hierfür ist der Authentifizierungsservice, der den
Benutzerlogin als eigenständigen Microservice abwi-
ckelt. Microservices sind unabhängig voneinander entwi-
ckelbar und skalierbar. Skalierbarkeit erfolgt entweder
vertikal durch die Erweiterung der Ressourcen einer Ma-
schine oder horizontal durch die Verteilung der Arbeits-
last auf mehrere Systeme (RedHat 2019; AWS o. D.;
Blinowski et al. 2022, S. 20360).

Architekturprinzipien
Für die effektive Integration von Microservices in ein
System sind bestimmte Architekturprinzipien unerläss-
lich, um ihr volles Potenzial zu entfalten. Laut der
IEEE/ISO/IEC 42010-2022 Norm beschreibt eine Archi-
tektur das zentrale Konzept und die charakteristischen
Merkmale einer Einheit in einem definierten Umfeld. Sie
enthält alle notwendigen Informationen für Implementie-
rung und Weiterentwicklung. Gartner ergänzt diese De-
finition, indem die verwendete Hardware, Software und
Kommunikationsmechanismen als entscheidende Be-
standteile der Architektur hervorgehoben werden (IEEE
Computer Society/Software & Systems Engineering
Standards 2022; Gartner o. D.a).
Das erste zentrale Architekturprinzip von Microservices
ist die Modularität. Dabei wird ein System in klar abge-
grenzte Module aufgeteilt, die durch ihre externen Eigen-
schaften, insbesondere ihre Schnittstellen, definiert sind.
Diese Schnittstellen ermöglichen die Interaktion zwi-
schen den Modulen. Ein wichtiger Aspekt der Modulari-
tät ist die Austauschbarkeit von Modulen. Ein Modul
kann durch ein anderes ersetzt werden, solange es diesel-
ben Eigenschaften aufweist. Jedes Modul sollte zudem
leicht weiterentwickelbar sein und über eine eigene Do-
kumentation verfügen (Dowalil 2018, S. 2 f.). Ein weite-
res wichtiges Architekturprinzip ist die Kontextgrenze,
auch „Bounded Context“ genannt, die aus dem Domain-
Driven Design stammt. Dieser Softwareentwicklungsan-
satz zielt darauf ab, Software entlang der Prozesse und
Regeln einer bestimmten Domäne zu entwickeln. Die
Kontextgrenze definiert klare Grenzen für ein Modul
oder eine Microservice-Komponente und stellt sicher,
dass das Modell innerhalb dieser Grenzen einheitlich und
konsistent bleibt. Dabei geht es nicht nur um die Bereit-
stellung einer spezifischen Funktionalität, sondern auch
darum, die interne Komplexität zu verbergen, sodass ex-
terne Systeme keinen Zugriff auf interne Details erhalten
(Newman 2021, S. 52 f., 58 f., 2020, S. 31; Dowalil 2018,
S. 64 f.; Fowler 2020). Um die Modularität in einer Ar-
chitektur effektiv umzusetzen, spielen ebenfalls Soft-
ware-Design-Prinzipien wie Separation of Concerns und
das Single Responsibility Principle eine zentrale Rolle.
Das Prinzip der Separation of Concerns besagt, dass jede
Funktion eines Systems in einem eigenständigen Bau-
stein realisiert werden sollte. Im Kontext von Microser-
vices bedeutet dies, dass jede Funktionalität als eigen-
ständiger Service abgebildet wird. Das Single Responsi-
bility Principle ergänzt dieses Konzept, indem es sicher-
stellt, dass jeder Microservice nur eine spezifische Ver-
antwortlichkeit hat. Dadurch existiert für jeden Service
nur einen Grund für Änderungen, was die Wartbarkeit
und Weiterentwicklung vereinfacht (Dowalil 2018, S. 31

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 40

ff.; Hu 2023, S. 107). Das zweite wichtige Architektur-
prinzip ist die lose Kopplung. Grundsätzlich beschreibt
die Kopplung die Abhängigkeiten zwischen den Baustei-
nen einer Architektur. Im Kontext von Microservices be-
deutet lose Kopplung, dass die einzelnen Services nur
minimale Informationen übereinander besitzen und wei-
testgehend unabhängig agieren. Konkret heißt das, dass
Änderungen an einem Service keine oder nur minimale
Auswirkungen auf andere Services haben sollten. Eine
stabile Struktur zeichnet sich dadurch aus, dass sie starke
Kohäsion und schwache Kopplung aufweist. Kohäsion
beschreibt das Maß, in dem die Komponenten innerhalb
eines Moduls eng miteinander verbunden und auf eine
gemeinsame Funktionalität ausgerichtet sind. Eine hohe
Kohäsion fördert die Wartbarkeit und Weiterentwicklung
der Module, da die Funktionen eines Moduls klar defi-
niert und aufeinander abgestimmt sind (Newman 2020,
S. 17; Dowalil 2018, S. 25; Newman 2021, S. 38 f.;
Farley o. D.). Neben der Modularität und der losen Kopp-
lung ist die Autonomie der Services ein weiteres ent-
scheidendes Prinzip. Die Autonomie lässt sich aus zwei
Perspektiven betrachten. Zum einen sollten verschiedene
Teams in der Lage sein, im Rahmen einer gemeinsamen
Governance (Shared Governance) eigenständig Services
zu entwickeln und bereitzustellen. Das bedeutet, dass
diese Teams volle Verantwortung für die Entwicklung
und Verwaltung ihrer Services tragen. Zum anderen soll-
ten die Microservices selbst ebenfalls autonom sein. Dies
erfordert, dass jeder Service so gestaltet ist, dass er unab-
hängig und in sich geschlossen funktioniert. Dadurch
kann ein Microservice losgelöst von anderen Services
entwickelt, veröffentlicht und betrieben werden, was die
Flexibilität und Skalierbarkeit der gesamten Architektur
erheblich steigert (Khan et al. 2021, S. 7). Ein weiteres
zentrales Architekturprinzip von Microservices betrifft
die Kommunikation zwischen den einzelnen Services.
Microservices interagieren über Schnittstellen (APIs),
die eine entscheidende Rolle im System spielen, da sie
die interne Kommunikation zwischen den Services er-
möglichen. Um eine lose Kopplung zu gewährleisten,
sollten diese Schnittstellen lediglich die Informationen
bereitstellen, die für die Interaktion mit anderen Services
notwendig sind. Dies reduziert Abhängigkeiten und för-
dert die Unabhängigkeit der einzelnen Microservices
(Dowalil 2018, S. 123). Im Kontext von Microservices
hat sich hier das Designprinzip „smart endpoints and
dumb pipes“ durchgesetzt. Jeder Microservice fungiert
dabei als eine Art Filter. Er empfängt Anfragen, verarbei-
tet sie mit der entsprechenden Logik und liefert das ent-
sprechende Ergebnis zurück. Die Kommunikation zwi-
schen den Services wird dabei möglichst einfach gehal-
ten, ohne komplexes Anfragenrouting oder Datentrans-
formationen. Zur Kommunikation werden hauptsächlich
zwei Protokolle verwendet: HTTP für synchrone Kom-
munikation, bei der eine Anfrage und eine direkte Ant-
wort erfolgen, und Lightweight Messaging für asyn-
chrone Kommunikation über einen Nachrichtenbus
(Alpers et al. 2015, S. 73; Fowler und Lewis 2014;
Dowalil 2018, S. 74 f.; Montemagno et al. 2022). Obwohl
das Designprinzip „smart endpoints and dumb pipes“ die
Komplexität reduziert und eine einfache Kommunikation

zwischen den Services fördert, bleibt die Möglichkeit
von Fehlern bestehen. Diese können durch menschliches
Versagen oder technische Störungen verursacht werden.
Daher ist Resilienz ein zentraler Aspekt beim Entwurf ei-
ner Microservice-Architektur. Resilienz beschreibt die
Fähigkeit eines Systems, trotz auftretender Fehler weiter
zu funktionieren und sich schnell zu erholen. Das Ziel
ist es, dass bei einem Fehler nicht das gesamte System
ausfällt, sondern nur die betroffenen Bereiche beeinträch-
tigt werden, während der Rest des Systems weiterhin
funktionsfähig bleibt. Zur Unterstützung der Resilienz
können Mechanismen wie Timeouts implementiert wer-
den. Dabei wird festgelegt, dass eine Serviceanfrage in-
nerhalb einer bestimmten Zeit beantwortet werden muss.
Bleibt diese aus, wird der Service als ausgefallen be-
trachtet (Indrasiri und Siriwardena 2018, S. 42; Wolff
2018, S. 207 f.). Damit ein reibungsloser Betrieb in
einer Microservice-Architektur gewährleistet werden
kann, sind Monitoring- und Logging-Funktionalitä-
ten unerlässlich. Logging ermöglicht es, Ereignisse in
den einzelnen Services nachzuvollziehen, was nicht nur
für die Erstellung von Statistiken, sondern vor allem für
die effiziente Fehlersuche von zentraler Bedeutung ist.
Log-Dateien sind in der Regel so strukturiert, dass sie
von Menschen leicht interpretiert werden können.
Durch Monitoring können wichtige Metriken wie die
Antwortzeiten der Services und die Anzahl fehlge-
schlagener Anfragen kontinuierlich überwacht werden.
Diese Informationen sind entscheidend, um frühzeitig
Probleme zu identifizieren und die Systemstabilität si-
cherzustellen (Wolff 2018, S. 244 f.; Indrasiri und Siri-
wardena 2018, S. 48 f., 373; Khan et al. 2021, S. 8).
Aufgrund der erhöhten Netzwerkkommunikation in einer
Microservice-Architektur ist es essenziell, dass nur
autorisierte Parteien Zugriff auf die Services haben.
Daher sollten Microservices nur die minimal benötigten
Rechte besitzen, insbesondere bei Datenbankzugriffen
und sensiblen Ressourcen. Ein effizientes Identity-
und Access Management (IAM) ist unerlässlich, um
sicherzustellen, dass ausschließlich autorisierte Nutzer
und Services auf die Microservices zugreifen können.
Zudem müssen Zugangsdaten wie E-Mails und Passwör-
ter sicher gespeichert werden und dürfen nicht im Klar-
text vorliegen, um Sicherheitsrisiken zu vermeiden
(Newman 2021, S. 29, 345-347, 354-456).

Vorteile und Herausforderungen
Microservices bieten gegenüber monolithischen Archi-
tekturen zahlreiche Vorteile, jedoch besitzen sie auch
Herausforderungen. Ein wesentlicher Vorteil besteht in
der Unterstützung agiler Arbeitsweisen, die es Unterneh-
men ermöglicht, schneller auf veränderte Geschäftsan-
forderungen zu reagieren. Innerhalb einer Microservice-
Architektur lassen sich neue Services leichter entwi-
ckeln, bereitstellen und testen, was eine höhere Flexibi-
lität sowie schnellere Iterationen ermöglicht. Falls ein neu
entwickelter Service nicht den gewünschten Anforderun-
gen entspricht, kann dieser mit geringem Aufwand
deaktiviert und durch eine alternative Implementierung
ersetzt werden. Diese Agilität verkürzt die Entwick-

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 41

lungszeit von Microservices erheblich, was es den Ent-
wicklerteams ermöglicht, flexibler und schneller auf
Marktveränderungen zu reagieren. Dadurch können Un-
ternehmen ihre Innovationszyklen beschleunigen und
Wettbewerbsvorteile erzielen (Indrasiri und Siriwardena
2018, S. 14; Nadareishvili et al. 2016, S. 14-16; Khan et
al. 2021, S. 11). Ein weiterer Vorteil von Microservices
ist die verbesserte Wartbarkeit. Dank der modularen und
unabhängigen Struktur lassen sich Services leichter war-
ten. Da die Logik und Datenhaltung innerhalb der Ser-
vices erfolgt, sind keine externen Abhängigkeiten not-
wendig. Updates betreffen somit nur den jeweiligen Ser-
vice, während der Rest des Systems unverändert
bleibt. Dies fördert nicht nur die Wartbarkeit, sondern
auch die langfristige Nachhaltigkeit der Softwareent-
wicklung, da veraltete Systemstrukturen vermieden und
eine zukunftsfähige IT-Infrastruktur geschaffen wird
(Khan et al. 2021, S. 11; Eyerman und Hur 2022, S. 1;
Wolff 2018, S. 60-62). Neben der Wartbarkeit ermögli-
chen Microservices Unternehmen, neue Features und
Bugfixes schneller zu veröffentlichen. Die Unabhäng-
igkeit der Entwicklungsteams trägt dazu bei, da sie ohne
Abhängigkeit von anderen Teams effizienter arbeiten
können. Zudem erlaubt die Microservice-Architektur den
Entwicklern, moderne Technologien zu nutzen, ohne an
veraltete Entscheidungen gebunden zu sein. Ein weiterer
Vorteil ist die Skalierbarkeit: Microservices können indi-
viduell skaliert werden, ohne das gesamte System anpas-
sen zu müssen. Dies ermöglicht eine effiziente Nutzung
von Ressourcen, indem Services bei steigenden Anfragen
hoch- und bei sinkenden Anfragen wieder herunterska-
liert werden, ohne die Performance zu beeinträchtigen
(Khan et al. 2021, S. 11, 12; Wolff 2018, S. 64 f., 66 f.;
GitLab 2022). Trotz der Vorteile wie gesteigerte Agili-
tät, verbesserte Wartbarkeit, verkürzte Time-to- Mar-
ket und erhöhter Skalierbarkeit müssen auch die Heraus-
forderungen von Microservices berücksichtigt werden.
Eine zentrale Herausforderung ist die erhöhte Komplexi-
tät, die durch die Vielzahl autonomer und lose gekop-
pelter Komponenten entsteht. Insbesondere die Inter-Ser-
vice-Kommunikation erfordert effiziente und zuverläs-
sige Kommunikationswege, die oft komplexer sind als die
Entwicklung der Services selbst. Auch das Daten- und
Transaktionsmanagement wird durch die verteilte Logik
und Datenhaltung anspruchsvoller. Zusätzlich ist bereits
die Definition und Erstellung der Services eine Heraus-
forderung. Um eine effektive Modularisierung sicherzu-
stellen, müssen Unternehmen klar identifizieren, welche
Funktionalitäten als eigenständige Module umgesetzt
werden sollten. Falsch definierte Servicegrenzen kön-
nen zu erhöhtem Datenaustausch über das Netzwerk füh-
ren, was wiederum die Kopplung zwischen den Services
verstärkt und der Grundidee der losen Kopplung wider-
spricht (Indrasiri und Siriwardena 2018, S. 15 f.; Jams-
hidi et al. 2018, S. 31).
Auch das Monitoring der Services stellt eine Herausfor-
derung dar. Durch die Verteilung der Microservices kann
es schwierig sein, den Überblick über die Beziehungen
zwischen den einzelnen Services zu behalten. Die auto-

nome Struktur der Services, die zudem in unterschiedli-
chen Technologien implementiert sein können, macht ein
umfassendes Logging- und Monitoringkonzept unerläss-
lich. Dies wird zusätzlich dadurch erschwert, dass Micro-
services oft von unterschiedlichen Teams entwickelt wer-
den. Eine weitere Herausforderung sind die Kosten bei
der Einführung einer Microservice-Architektur, die vor
allem in der Anfangsphase hoch ausfallen können. Diese
resultieren unter anderem aus der Notwendigkeit, die be-
stehende Infrastruktur zu erweitern, etwa durch den Aus-
bau des Netzwerks, zusätzlichen Speicherplatz oder die
Implementierung zusätzlicher Software. Zudem müssen
während der Migration die monolithischen Systeme pa-
rallel zu den neuen Microservices betrieben werden, was
den Aufwand weiter erhöht. Ein weiterer Faktor sind die
verzögerten Entwicklungsprozesse zu Beginn der Um-
stellung, da sich Entwickler zunächst an die neuen Struk-
turen und Arbeitsabläufe gewöhnen müssen. Abhängig
vom Erfahrungsgrad der Entwickler können zusätzliche
Kosten für die Einstellung von Fachkräften mit Micro-
service-Kenntnissen entstehen. Trotz dieser Anfangskos-
ten sollten Microservices jedoch als strategische Investi-
tion betrachtet werden, die langfristig Effizienzsteigerun-
gen und Flexibilität fördern (Niedermaier et al. 2019, S.
42-44; Khan et al. 2021, S. 14; Baškarada et al. 2020, S.
6; Newman 2021, S. 26-28; Singleton 2016, S. 17).

USECASE
Vorgehensweise Experteninterviews
Zur Erfassung der Anforderungen an die zu entwickelnde
Microservice-Architektur wurden leitfadenbasierte Ex-
perteninterviews durchgeführt. Ziel dieser Interviews
war es, relevante Anforderungen zu identifizieren und
wertvolle Einblicke aus der Praxis zu gewinnen, die aus
anderen Quellen nur schwer zu ermitteln wären. Der In-
terviewleitfaden ist in drei Bereiche unterteilt:

1. Allgemeine Informationen der Experten: Zu-
nächst wurden Fragen gestellt, um den Hinter-
grund der Experten zu erfassen und ihre Erfah-
rungen im jeweiligen Unternehmenskontext
besser einzuordnen.

2. Kenntnisse über Microservices und Robotic
Process Automation (RPA): In diesem Ab-
schnitt wurden die Experten zu ihrer Einschät-
zung hinsichtlich verschiedener relevanter The-
menbereiche innerhalb einer Microservice-Ar-
chitektur befragt. Dabei sollten sie die Ziele, die
mit einer solchen Architektur verfolgt werden
können, nach Wertbeitrag und Realisierbarkeit
priorisieren, um die Anforderungen praxisnah
und umsetzbar zu gestalten.

3. Spezifische Anforderungen an die Architektur:
Abschließend wurde ein tieferer Einblick in die
spezifischen Erwartungen und Anforderungen
der Experten gewonnen. Hierbei lag der Fokus
auf den wichtigsten Mehrwerten für die zukünf-
tige Architektur sowie auf potenziellen Metho-
den zur Realisierung und Katalogisierung der
Microservices.

Die Interviews wurden per Videokonferenz durchge-
führt, um eine strukturierte Erhebung der Anforderungen

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 42

sicherzustellen.

Ergebnisse der Experteninterviews
Die befragten Experten setzten sich aus Beratern und
Entwicklern zusammen, was zu unterschiedlichen An-
sichten führte. Die Interviews zeigten, dass das Verständ-
nis von Microservices und RPA variiert. Einige Experten
sehen RPA als Werkzeug zur Automatisierung von
Frontend-Prozessen, während andere eine breitere Defi-
nition verwenden, die auch die Automatisierung von Pro-
zessen in Systemen ohne native Automatisierungsfunkti-
onen umfasst. Beim Thema Microservices reichten die
Auffassungen von einer einfachen modularen Architek-
tur bis hin zur Weiterentwicklung der serviceorientierten
Architektur (SOA), die komplexere Systemarchitekturen
ermöglicht. Ein zentrales Ergebnis der Interviews ist die
Identifikation der Hauptziele bei der Implementierung ei-
ner Microservice-Architektur im RPA-Umfeld. Dabei
wurden Skalierbarkeit, Flexibilität, Wartbarkeit und Per-
formance als zentrale Prioritäten genannt. Außerdem be-
werteten die Experten die potenziellen Mehrwerte nach
Wertbeitrag und Realisierbarkeit, was eine systematische
Rangordnung ermöglichte. Besonders hoch evaluiert
wurden die Mehrwerte „Wiederverwendbarkeit“, „Wart-
barkeit“, „Skalierbarkeit“, „Ersetzbarkeit“ und „Flexibi-
lität“. Diese spielen eine entscheidende Rolle bei der Ar-
chitektur entwicklung (siehe Tabelle 1). Ein weiterer
Schwerpunkt der Untersuchung lag auf der Analyse, wie
die einzelnen Expertengruppen, insbesondere Entwickler
und Berater, die Mehrwerte unterschiedlich bewerten.
Hier zeigte sich eine weitgehende Übereinstimmung der
Top-5-Mehrwerte beider Gruppen. Jedoch wurden Un
terschiede hinsichtlich der Gewichtung einzelner Mehr-
werte beobachtet: Während Entwickler vermehrt die „Sta-
bilität“ der Systeme in den Vordergrund stellten, legten
Berater einen stärkeren Fokus auf die „Flexibilität“ der
Architektur.

Tabelle 1 Top-Mehrwerte Quelle: Eigene Darstellung

Die detaillierte Analyse der Mehrwertbewertungen ver-
deutlicht, dass insbesondere die „Wiederverwendbar-
keit“ und „Wartbarkeit“ von allen Experten als sehr rele-
vant eingestuft wurden. Dies lässt sich darauf zurückfüh-
ren, dass diese Eigenschaften eine langfristige Kostener-
sparnis und höhere Effizienz bei der Wartung und Erwei-
terung der Architektur ermöglichen. Die Unterschiede
zwischen Entwicklern und Beratern in der Priorisierung
anderer Merkmale, wie „Stabilität“ versus „Flexibilität“,
lassen sich durch die jeweiligen Rollen und Verantwort-
lichkeiten der Experten erklären. Entwickler fokussieren

sich in ihrer Arbeit häufig auf die technische Umsetzbar-
keit und die Gewährleistung der Systemstabilität, wäh-
rend Berater strategische Faktoren wie Anpassungsfähig-
keit und Skalierbarkeit im Kontext zukünftiger Anforde-
rungen stärker gewichten.
Zusammenfassend lässt sich festhalten, dass die Exper-
teninterviews wertvolle Einblicke in die unterschiedli-
chen Einschätzungen und Prioritäten hinsichtlich der
Mehrwerte von Microservices und RPA liefern. Die Er-
gebnisse deuten darauf hin, dass trotz unterschiedlicher
beruflicher Hintergründe zentrale Mehrwerte von allen
Expertengruppen ähnlich hoch gewichtet werden. Dies
legt nahe, dass bestimmte Eigenschaften, wie Wartbar-
keit und Wiederverwendbarkeit, als universell bedeutend
für die Implementierung von Microservice-Architektu-
ren in Verbindung mit RPA gelten.

Anforderungen und Anpassung der Architekturprin-
zipien
Die abgeleiteten Anforderungen an eine Microservice-
Architektur im RPA-Umfeld werden auf Basis eines ka-
tegorienbasierten Ansatzes abgeleitet. In der Kategorie
„Entwicklung und Design“ stehen Modularität, Wieder-
verwendbarkeit, Flexibilität und lose Kopplung im Vor-
dergrund, um die Anpassungsfähigkeit und Effizienz der
Architektur zu maximieren. Im Bereich „Betrieb und
Wartung“ werden die Wartbarkeit, einfache Verwaltung
und umfassende Dokumentation hervorgehoben, um eine
langfristig stabile und pflegeleichte Architektur sicher-
zustellen. Für die Kategorie „Performance und Qualität“
waren vor allem Skalierbarkeit, Stabilität und Robustheit
von zentraler Bedeutung, da diese eine hohe Effizienz und
Zuverlässigkeit auch unter variierenden Bedingungen
garantierten. In der Kategorie „Governance und Compli-
ance“ liegt der Fokus auf der Entwicklung von Richtli-
nien, einer Katalogisierung der Microservices sowie der
Verantwortung für die Einhaltung von Standards und de-
ren regelmäßiger Überprüfung.
Die zuvor beschriebenen Anforderungen werden durch
angepasste Architekturprinzipien in der Microservice-
Architektur für RPA abgebildet. Da RPA-Microservices
noch einen neuen Ansatz darstellen, müssen die allge-
meinen Prinzipien für Microservices an die spezifischen
Gegebenheiten angepasst werden.
Die Modularität ist so anzupassen, dass die RPA-
Microservices flexibel, leicht austauschbar und wieder-
verwendbar sind. In der Architektur wird dies dadurch
umgesetzt, dass jedes Modul über wenige Parameter (wie
Modulname und Inputparameter) aufgerufen werden
kann. Durch diese Struktur können einzelne Module
nahtlos durch andere mit denselben Eigenschaften ersetzt
werden.
Das Prinzip des Bounded Contexts wird übernommen,
um sicherzustellen, dass die Komplexität der Automati-
sierungsprozesse verborgen bleibt. In der Architektur
wird dies durch die präzise Abgrenzung der RPA-
Microservices erreicht, sodass jeder Service eine spezifi-
sche Aufgabe übernimmt, ohne Details seiner internen
Funktionsweise nach außen preiszugeben. Dies verstärkt
die Anwendung der Prinzipien Separation of Concerns

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 43

und Single Responsibility: Diese stellen sicher, dass je-
der Microservice eine klar abgegrenzte Funktion er-
füllt. In der Architektur bedeutet dies, dass RPA-Mi-
croservices als isolierte, unabhängig operierende Einhei-
ten entworfen werden, was die Wartbarkeit und Integra-
tion erleichtert.
Die lose Kopplung wird dahingehend angepasst, dass
RPA-Microservices möglichst unabhängig voneinander
agieren. In der Architektur erfolgt die Umsetzung durch
die Schaffung von isolierten Automatisierungsprozessen,
die nur minimale Abhängigkeiten zu anderen Prozessen
aufweisen. Dies ermöglicht es, Änderungen an einem
RPA-Prozess vorzunehmen, ohne dass andere Prozesse
oder der Gesamtprozessfluss beeinträchtigt werden, so-
lange die definierten Schnittstellen (Input- und Output-
parameter) unverändert bleiben. Trotz der engen Integra-
tion mit den zu automatisierenden Systemen bleibt die
lose Kopplung durch die klare Trennung der Automatisie-
rungsaufgaben bestehen.
Die Autonomie der Services wird ebenfalls angepasst.
Jeder RPA-Service ist so konzipiert, dass er unabhängig
von anderen Services betrieben und veröffentlicht wer-
den kann. In der Architektur wird dies durch den Einsatz
von einer Orchestrierungssoftware unterstützt, die die
Koordination der RPA-Services ermöglicht. Dadurch
können die RPA-Services flexibel in unterschiedliche
Geschäftsprozesse integriert und wiederverwendet wer-
den, was die Autonomie und Skalierbarkeit der Architek-
tur erhöht. Die Prinzipien der Resilienz, Monitoring und
Logging werden so angepasst, dass sie den spezifischen
Anforderungen von RPA entsprechen. In der Architek-
tur erfolgt die Abbildung durch die Nutzung von RPA-
Plattformen und Orchestrierungsumgebungen, die Me-
chanismen zur Überwachung des Zustands und der Per-
formance der RPA-Prozesse bieten. Diese Systeme er-
möglichen es, Fehlerszenarien aufzuzeichnen und die
Stabilität der Microservices sicherzustellen. Logging
und Monitoring werden genutzt, um Aktivitäten nach-
zuvollziehen und für Compliance- und
Audit-Zwecke zu protokollieren. Beim Identity Manage-
ment wird das Prinzip angepasst, um eine sichere Verwal-
tung von Zugriffsrechten in der Architektur zu gewähr-
leisten. Die Umsetzung erfolgt durch die in RPA- und
Orchestrierungsplattformen integrierten Lösungen, die
sicherstellen, dass nur autorisierte Nutzer und Systeme
auf bestimmte Ressourcen zugreifen können. Die sichere
Speicherung von Zugangsdaten erfolgt dabei durch ver-
schlüsselte Verfahren, um die Sicherheit der Architektur
weiter zu erhöhen.

Microservice-Architekturentwurf
Aufbau und Komponenten
Die entwickelte Microservice-Architektur bildet die
Grundlage für die Modularisierung von RPA-Prozessen
und zielt darauf ab, eine flexible, skalierbare, modulare,
ersetzbare, wiederverwendbare und wartbare Umgebung
zu schaffen.
Die Architektur unterscheidet zwischen zwei Arten von
Microservices:

• Wertgenerierende Microservices: Diese Ser-

vices verarbeiten Daten nach festen Regeln und
liefern ein messbares Ergebnis, z. B. das Verar-
beiten einer Excel-Tabelle und das Bereitstellen
eines neuen Outputs.

• Nicht-wertgenerierende Microservices: Diese
Services unterstützen den Gesamtprozess, tra-
gen jedoch nicht direkt zum Endergebnis bei,
wie z. B. die Authentifizierung an Systemen.

Im RPA-Kontext ist diese Unterscheidung wichtig, da
nach jedem abgeschlossenen Prozess eine erneute Au-
thentifizierung erforderlich ist. Die Architektur sieht da-
her vor, nicht-wertgenerierende Services als standardi-
sierte Module bereitzustellen, die zentralisiert angepasst
werden können.
Wertgenerierende Microservices werden hingegen als ei-
genständige RPA-Prozesse umgesetzt. Jeder Prozess fun-
giert als eigenständiger Microservice, der spezifischen
Input verarbeitet und daraufhin einen entsprechenden
Output generiert. Diese Services werden über ein Or-
chestrierungstool genutzt, wobei die Gesamtprozessmo-
dellierung in einem Business Process Automation Tool
erfolgt. Die Kommunikation erfolgt dabei über zuvor
vordefinierte Schnittstellen, die den Prozessoutput zu-
rückgeben.

Katalogisierung
Die Anzahl der Microservices kann in Unternehmen
schnell steigen, besonders bei dezentralen Organisati-
onsstrukturen. Ein zentraler Katalog bietet hierbei
eine hilfreiche Übersicht zu Funktionalitäten und Zu-
ständigkeiten der Microservices. Der ausgearbeitete Ka-
talog dient der Verwaltung und Weiterentwicklung
und basiert auf den geführten Experteninterviews. Zu
den zentralen Katalogelementen gehören grundlegende
Informationen wie der Servicename, eine klare Be-
schreibung der Entwickler und Verantwortlichen. Diese
Daten helfen, Zuständigkeiten zu klären und SLAs
festzulegen. Technische Details wie Inputparameter,
erwarteter Output und Abhängigkeiten ermöglichen
eine klare Nutzungsübersicht. Wichtig ist es, dort die
aktuelle Version sowie die letzte Änderung zu dokumen-
tieren, inklusive einer Verlinkung zu weiterführenden
Informationen (z.B. einer Wiki-Seite). Für die Umset-
zung bietet sich eine Tabellenstruktur in einer Wiki-
Umgebung wie Confluence an, um die Übersichtlich-
keit zu wahren. Mit steigender Anzahl an Microser-
vices wird die Nutzung eines Marktplatzes empfohlen.
Ein Beispiel ist der UiPath-Marktplatz, bei dem Ser-
vices nach Kategorien filterbar sind. Eine mögliche
Umsetzung kann z.B. mit dem Open-Source-Tool
„Backstage“ von Spotify erfolgen, das über einen
zentralen Softwarekatalog Metadaten und Abhängig-
keiten von Microservices verwaltet und visualisieren
kann.

Governance und Maintenance
Governance definiert die Richtlinien und Standards, die
für den Betrieb und die Verwaltung der Architektur not-
wendig sind. Wartung bezieht sich auf die kontinuierliche
Aktualisierung und Optimierung der Microservices, um

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 44

deren Leistung und Zuverlässigkeit sicherzustellen. Es
wird eine Shared Governance empfohlen, bei der Teams
innerhalb eines festgelegten Rahmens selbstständig Ent-
scheidungen treffen können und Verantwortung für ihre
Microservices übernehmen. Dabei sind klare Standards,
insbesondere in Bezug auf Sicherheit, Dokumentation
und Zugriffsrichtlinien, von zentraler Bedeutung. Jeder
Microservice sollte modular, skalierbar und nur mit dem
notwendigen Funktionsumfang ausgestattet sein. Bereits
bestehende Monitoring- und Logging-Systeme sollten
genutzt und nach einer Testphase bewertet werden. Um
die Einhaltung der Standards sicherzustellen, wird die
Einrichtung eines Governance-Komitees vorgeschlagen,
das als zentrale Anlaufstelle fungiert und die Implemen-
tierung der Richtlinien überwacht. Microservices sind
regelmäßig zu überprüfen und zu optimieren, beispiels-
weise je nach Art des Services halbjährlich oder jähr-
lich. Diese Überprüfungen sollten durch automatisierte
Tests unterstützt werden, die regelmäßig erfolgen. Zu-
sätzlich wird empfohlen, Schulungs- und Weiterbil-
dungsprogramme für Mitarbeiter anzubieten, um ein tie-
feres Verständnis von Microservices, den zugrundelie-
genden Technologien und Best Practices im gesamten
Unternehmen zu fördern. Dies trägt nicht nur zur Ver-
besserung der fachlichen Kompetenz bei, sondern unter-
stützt auch die fortlaufende Optimierung der Architektur.

Integration
Die bestehende Beispiel-Infrastruktur nutzt UiPath als
RPA-Tool und Flowable als BPA-Tool. Diese beiden
Systeme spielen eine zentrale Rolle bei der Integration im
Bebauungsplan.
Die Architektur unterscheidet zwischen wertgenerieren-
den und nicht-wertgenerierenden Microservices. Für
wertgenerierende Microservices wird ein vierstufiges
Modell verwendet, das aus den Schichten Workflow,
Orchestrator, Automation Control Center und Automa-
tion Bot besteht. Die Workflow-Schicht stellt die Ge-
samtprozessmodellierung in Flowable dar, wo Prozesse
nach dem BPMN 2.0-Standard modelliert werden.
UiPath Microservices werden in den Workflow integriert
und lassen sich über eine Service-Task ansteuern. Diese
Service-Task kommuniziert über einen Konnektor mit
dem UiPath Orchestrator und führt API-Aufrufe aus, um
den entsprechenden RPA-Prozess zu starten. Der
Konnektor informiert bei Fehlern und bietet eine Restart-
Option, um die Robustheit der Prozesse zu gewährleis-
ten. Sobald der UiPath Orchestrator den Aufruf erhält,
wird ein Warteschlangenobjekt angelegt. Die Automa-
tion Control Center Schicht verarbeitet Prozesse in einer
Warteschlange, um die begrenzte Anzahl an Robotern
optimal nutzen zu können. Dadurch wird verhindert, dass
Prozesse gleichzeitig gestartet werden und zu Systemab-
stürzen führen. Die Priorisierung von Prozessen ist ein
integraler Bestandteil, wobei zehn Prioritätsstufen zur
Verfügung stehen, von „kritisch“ bis „niedrig“. Dies er-
möglicht eine effiziente und gesteuerte Bearbeitung der
Aufgaben. Sobald ein Prozess ausgeführt wird, erfolgt die
Rückgabe der Ergebnisse an den Orchestrator, der die
Informationen an Flowable weiterleitet. Durch diese
Rückmeldung kann der Workflow fortgesetzt werden.

Weiterhin sind Parallelisierungen innerhalb des Modells
möglich, um die Effizienz der Prozesse zu maximieren.
Abbildung 4 zeigt den Aufbau der Microservice-Archi-
tektur für wertgenerierende Microservices.

Abbildung 4 Wertgenerierende Microservice-Architektur
Quelle: Eigene Darstellung

Der zweite Teil der Microservice-Architektur (Abbil-
dung 5) konzentriert sich auf die Bereitstellung nicht-
wertgenerierender Microservices in Form von wiederver-
wendbaren Modulen. Diese Module erfüllen unterstüt-
zende Funktionen, die zwar keinen direkten Mehrwert
schaffen, aber für die Umsetzung von Geschäftsprozes-
sen notwendig sind wie z.B. System-Authentifi-
zierungen. Eine effiziente Implementierung dieser
Module lässt sich durch den Einsatz von UiPath-Biblio-
theken realisieren, die eine standardisierte Bereitstellung
solcher Prozesse ermöglichen und somit zur Konsistenz
und Wiederverwendbarkeit in der gesamten Architektur
beitragen. Die Architektur der Bibliotheken besteht aus
zwei zentralen Bereichen: der Entwicklung und der Ak-
tualisierung. Zunächst werden die Module als eigenstän-
dige Prozesse innerhalb einer Bibliothek entwickelt, wo-
bei jedes Modul eine spezifische Funktionalität abbildet,
die es in den Geschäftsprozessen erfüllen soll. Ein Bei-
spiel hierfür ist ein Authentifizierungsprozess, der als ei-
genständiges Modul in eine Bibliothek integriert wird.
Diese Modularisierung ermöglicht eine flexible Wieder-
verwendung der Prozesse in unterschiedlichen Kontex-
ten. Nach der Entwicklung werden die Module umfas-
send getestet, um sicherzustellen, dass sie fehlerfrei
funktionieren. Anschließend wird die Bibliothek veröf-
fentlicht, sodass die Module in weiteren Prozessen im-
portiert und verwendet werden können. Um eine
flexible Handhabung der Module zu gewährleisten,
lassen sich Parameter wie Argumente, Assets oder
Dropdown-Menüs definieren, durch die notwendige
Informationen dynamisch in das Modul übergeben
werden. Dies erhöht die Flexibilität bei der Anwendung
der Module, da sie ohne Änderungen an ihrer Struktur in

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 45

verschiedenen Prozessen genutzt werden können. Der
zweite wesentliche Aspekt der Architektur betrifft den
Aktualisierungsprozess der Bibliotheken. Im RPA-
Umfeld können selbst kleine Änderungen an Systemober-
flächen zu Fehlern führen, weshalb eine regelmäßige
Anpassung und Wartung der Module erforderlich
ist. Um dies effizient zu gestalten, müssen sich Biblio-
theken einfach aktualisieren lassen. Dazu wird das
Modul in der Bibliothek angepasst, erneut getestet und
nach erfolgreicher Prüfung erneut veröffentlicht. An-
schließend erfolgt die Aktualisierung aller Prozesse,
welche die Bibliothek nutzen, mithilfe eines Mas-
senupdatetools. Dieses Tool ermöglicht es, alle be-
troffenen Prozesse automatisch auf die neueste
Version der Bibliothek zu aktualisieren, wodurch der
manuelle Aufwand und die Fehleranfälligkeit erheblich
reduziert werden. Insgesamt ermöglicht die Bereitstel-
lung und Verwaltung wiederverwendbarer Module
in einer Microservice-Architektur eine hohe Flexibili-
tät und Effizienz. Durch die klare Trennung zwischen
wertgenerierenden und unterstützenden Prozessen wird
die Architektur modularer und leichter wartbar. Die
Verwendung von Bibliotheken spielt hierbei eine
zentrale Rolle, da sie nicht nur die Wiederverwend-
barkeit und Standardisierung fördern, sondern auch die
unkomplizierte Wartung und Aktualisierung von Pro-
zessen in dynamischen Umgebungen sicherstellen.

Abbildung 5 Nicht-wertgenerierende Microservice Architek-
tur Quelle: Eigene Darstellung

Bewertung der Use Case Architektur
Für die Evaluierung der Microservice-Architektur wird
das visuelle Hilfsmittel der Harvey Balls verwendet.
Diese ermöglichen eine differenzierte Darstellung des
Erfüllungsgrads der zuvor erhobenen Anforderungen.
Ein leerer Kreis (○) steht für Nichterfüllung, ein vollstän-
dig ausgefüllter Kreis (●) steht für die vollständige Erfül-
lung. Zwischen diesen beiden Extremen ermöglichen die
Abstufungen von 25 % (◔), 50 % (◑) und 75 % (◕) eine
feinere Differenzierung der Erfüllungsgrade an die Ar-
chitektur.

Tabelle 2 Harvey Balls Skala Quelle: Eigene Darstellung

Nachfolgend werden die einzelnen Bewertungen kurz er-
läutert:

Wiederverwendbarkeit (●): Die Architektur unterstützt
konkret zwei Arten von Wiederverwendbarkeit. Zum ei-
nen die Wiederverwendbarkeit in Form von Bibliothe-
ken, zum anderen die Wiederverwendbarkeit von ganzen
Services. Hierdurch unterstützt die vorgestellte Architek-
tur die Anforderung der Wiederverwendbarkeit vollum-
fänglich.
Wartbarkeit (◕): Die vorliegende Architektur erleich-
tert die Wartbarkeit der Prozesse. Zukünftig muss nur
noch an einer Stelle die Bibliothek oder der Service ge-
ändert werden, anstatt jeden Prozess einzeln anzupassen.
Im Kontext von Bibliotheken ist zwar weiterhin die Ver-
wendung eines Update Tools notwendig, dennoch wird
die Wartbarkeit durch die Architektur deutlich verbessert.
Skalierbarkeit (◕): Die Skalierbarkeit wird durch die
Verwendung von Warteschlangen optimiert, dennoch ist
die Skalierbarkeit primär im UiPath Kontext durch die be-
grenzte Roboterverfügbarkeit bzw. durch das Lizenzmo-
dell weitestgehend eingeschränkt.
Ersetzbarkeit (●): Die Architektur besitzt durch das Kon-
zept der Microservices eine adäquate Ersetzbarkeit. Es ist
möglich einzelne Services in der Flowable Prozesskette
oder Bibliotheksmodule innerhalb der Ui-Path Prozess-
kette auszutauschen. Die einzige Voraussetzung für einen
anpassungsfreien Austausch ist, dass Input und Output
identisch sind.
Flexibilität (◕): Die Architektur zeigt sich anpassungs-
fähig durch die Unterscheidung zwischen wertgenerie-
renden und nicht-wertgenerierenden Microservices, so-
wie durch die Verwendung eines Orchestrierungstools
wie Flowable. Diese Strukturierung ermöglicht es, zu-
künftig auch Microservices anderer Systeme zu integrie-
ren, was die Flexibilität weiter steigert. Es ist allerdings
zu beachten, dass starre/feste Prozessabläufe und zu spe-
zifisch gestaltete Prozesse die Flexibilität einschränken
können.
Testbarkeit (◑): Die Architektur fördert und erweitert
die Testbarkeit, indem sie das separate Testen einzelner
Module ermöglicht. Dies bedeutet, dass man jeden Mi-
croservice individuell und isoliert auf seine Funktionali-
tät prüfen kann, was zu einer hohen Testbarkeit führt. Je-
doch ist unklar, wie Integrationstests also Test, die auf das
Zusammenspiel zwischen den einzelnen Microservices

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 46

innerhalb des Systems abzielen, realisiert werden können.
Dies erweist sich als relevant, da unterschiedliche Sys-
teme innerhalb der Prozesse verwendet werden.
Performance (◑): Die Performance lässt sich nicht ge-
nau bewerten, da dies über einen längeren Zeitraum beo-
bachtet und anhand der dadurch gewonnenen Daten be-
wertet werden sollte. Dennoch stellt die Verwendung von
Warteschlangen innerhalb der Architektur eine prakti-
kable Lösung für die Lastenverteilung dar, was auf eine
gute Performance hindeuten kann.
Stabilität (◑): Die Stabilität der Architektur ist vorran-
gig an die Stabilität der Systeme und Prozesse gebunden,
weshalb sich eine Bewertung ebenfalls als schwierig er-
weist. Die Architektur ist offen für Mechanismen, welche
die Stabilität fördern, wie der bereits eingebaute Restart
Mechanismus im Fehlerfall. Solche Mechanismen sind
wichtig, um bei Ausfällen oder Fehlern die Funktionalität
der Prozesse aufrecht zu erhalten und schnelle Wiederan-
läufe zu ermöglichen. Allerdings müssen weitere Mecha-
nismen eingeführt werden, um die Stabilität sicherzustel-
len.
Fehlerbehebungsmöglichkeiten (◑): Die Fehlerbehe-
bungsmöglichkeiten sind durch den implementierten
Restart-Mechanismus innerhalb der Architektur berück-
sichtigt worden, was die Resilienz gegenüber Störungen
erhöht. Diese Möglichkeiten sind jedoch in hohem Maße
von den spezifischen Prozessen abhängig. Daraus folgt,
dass ohne detaillierte Kenntnisse über die einzelnen Pro-
zessabläufe eine vollständige Bewertung der Fehlerbehe-
bungsfähigkeit nicht möglich ist.
Integrationsfähigkeit (●): Die Architektur bietet eine
hohe Integrationsfähigkeit, was durch die klar definierte
Schnittstelle zwischen dem Orchestrierungstool und der
RPA-Umgebung gewährleistet wird. Zudem ermöglicht
die modulare Gestaltung eine flexible Einbindung neuer
Dienste und die Erweiterung bestehender Funktionalitä-
ten ohne größere Änderungen an der Gesamtarchitektur.
Die Offenheit der Architektur erleichtert die Integration
von Drittanbieter-Software und die Anpassung an geän-
derte Geschäftsanforderungen. Allerdings setzt die voll-
ständige Ausschöpfung der Integrationsfähigkeit eine tie-
fergehende Prüfung der Kompatibilität und eine fehler-
freie Konfiguration der einzelnen Komponenten und
Schnittstellen voraus.
Time-to-Market (◑): Die Architektur unterstützt eine
modulare Bauweise von Prozessen, was zu einer potenzi-
ellen Beschleunigung der Entwicklungszyklen beiträgt.
Dies kann sich positiv auf die Time-to-Market auswirken
und somit zu einem schnelleren Rollout neuer Funktiona-
litäten und geänderten Anforderungen führen. Allerdings
hängt die Time-to-Market auch von Faktoren wie der ver-
wendeten Schnittstelle zwischen UiPath und Flowable so-
wie dem Reifegrad der Entwicklungs- und Deployment-
Prozesse ab, da diese ebenfalls eine signifikante Rolle
spielen.
Compliance und Governance (◔): In ihrer grundlegen-
den Form bietet die Architektur keine expliziten Funktio-
nen zur Unterstützung von Compliance und Governance
wie Überwachung oder Protokollierung. Sie ist jedoch in

der Gestaltung offen für die Integration solcher Mecha-
nismen. Die im Kontext zu Erstellung der Architektur ver-
wendeten Softwarelösungen UiPath und Flowable enthal-
ten bereits eingebaute Governance- und Compliance-
Funktionen, welche die Einhaltung betrieblicher Richtli-
nien und Standards unterstützen.
Administrierbarkeit (◕): Die Architektur zeichnet sich
durch ihre klare Strukturierung und Modularität aus, was
die Administration erleichtert. Durch die Verwendung
von etablierten Tools wie UiPath und Flowable, die be-
reits über umfassende Verwaltungsoberflächen verfügen,
wird die Administrierbarkeit gestärkt. Dennoch hängt
eine effektive Administrierbarkeit von der Einrichtung
entsprechen der Management- und Monitoring-Tools
ab, die in der Lage sind, das System im operativen Betrieb
zu unterstützen.
Sicherheit (◔): Die Sicherheit ist ein kritischer Aspekt
der Architektur, welcher besondere Aufmerksamkeit er-
fordert. Durch die Verwendung modularer Komponenten
können Sicherheitsmaßnahmen gezielt und spezifisch für
jeden Microservice implementiert werden. Dies fördert
eine Sicherheitsarchitektur, die sich an den individuellen
Sicherheitsanforderungen jeder Komponente orientiert.
Die aktuelle Architektur besitzt durch die verwendeten
Systeme bereits Sicherheitsmechanismen für Authentifi-
zierung, Autorisierung und Verschlüsselung. Allerdings
besteht erhebliches Optimierungspotenzial, insbesondere
wenn man im RPA-Bereich Systeme verwendet, die um-
fassende Rollen- und Berechtigungskonzepte erfor-
dern. Es sollten zusätzliche Maßnahmen ergriffen wer-
den, um die Sicherheit weiter zu verbessern und sicher-
zustellen, dass keine übermäßigen Rechte existieren, spe-
ziell bei der Automatisierung kritischer Systeme.

FAZIT
Der Artikel hat sich mit der Entwicklung einer Microser-
vice-Architektur im RPA-Umfeld beschäftigt, um Vor-
teile wie bessere Wiederverwendbarkeit, erhöhte Skalier-
barkeit, größere Ersetzbarkeit und verbesserte Flexibili-
tät zu realisieren. Diese Aspekte tragen dazu bei, Ent-
wicklungs- und Wartungszeiten zu reduzieren und somit
die Agilität und Kosteneffizienz zu steigern.
Ein zentrales Ergebnis ist der Aufbau einer modularen
Architektur, die durch die Integration von RPA-
Microservices und ein Orchestrierungstool unterstützt
wird. Die Katalogisierung der Microservices sowie die
Unterscheidung zwischen wertgenerierenden und nicht-
wertgenerierenden Services fördern die Übersicht und
Wiederverwendbarkeit.

Handlungsempfehlung
Um die langfristige Effizienz und Skalierbarkeit der Ar-
chitektur sicherzustellen, sollte diese regelmäßig evalu-
iert und an sich ändernde Anforderungen angepasst wer-
den. Logging- und Monitoring-Konzepte sind ebenfalls
weiterzuentwickeln, insbesondere wenn die Anzahl an
Microservices steigt. Ein weiterer Aspekt ist die konti-
nuierliche Überprüfung der eingesetzten Microservices,
um unnötige Prozesse zu identifizieren und zusammen-
zuführen. Workshops und Schulungen sollten regelmä-

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 47

ßig angeboten werden, um das Wissen über Microser-
vices im Unternehmen zu vertiefen. Die Optimierung der
Schnittstellen zwischen den einzelnen Schichten, mög-
licherweise durch den Einsatz eines API-Gateways, ist
ein zentraler Aspekt, um die Effizienz weiter zu steigern.

Ausblick
Die vorgestellte Architektur bildet die Grundlage für zu-
künftige Weiterentwicklungen. Durch die Einführung
moderner Technologien wie künstlicher Intelligenz
könnten Ausfälle proaktiv verhindert und Sicherheits-
maßnahmen verbessert werden. Langfristig könnte die
Monetarisierung der entwickelten RPA-Microservices
als Umsatzquelle dienen und Unternehmen als Innovati-
onsführer in der Branche positionieren.

Literaturverzeichnis

Aguirre, Santiago; Rodriguez, Alejandro (2017): Auto-
mation of a Business Process Using Robotic Process
Automation (RPA): A Case Study, S. 65–71. DOI:
10.1007/978-3-319-66963-2_7.

Alberth, Markus; Mattern, Michael (2017): Automation.

Understanding robotic process Automation (RPA).
In: JOURNAL - THE CAPCO INSTITUTE JOURNAL
OF FINANCIAL TRANSFORMATION (46). Online
verfügbar unter https://www.capco.com/-/me-
dia/CapcoMedia/Capco-2023/Capco-Institute/Jour-
nal-46/JOURNAL46_5_Alberth.ashx.

Alpers, Sascha; Becker, Christoph; Oberweis, Andreas;
 Schuster, Thomas (2015): Microservice Based Tool
 Support for Business Process Modelling. In: 2015
 IEEE 19th International Enterprise Distributed Ob-

ject Computing Workshop, S. 71–78. DOI:
 10.1109/EDOCW.2015.32

Al-Slais, Yaqoob; Ali, Mazen (2023): Robotic Process

Automation and Intelligent Automation Security
Challenges: A Review. In: 2023 International Con-
ference On Cyber Management And Engineering
(CyMaEn), S. 71–77. DOI: 10.1109/Cy-
MaEn57228.2023.10050996.

Asatiani, Aleksandre; Penttinen Esko (2016): TURNING

ROBOTIC PROCESS AUTOMATION INTO
COMMERCIAL SUCCESS – CASE
OPUSCAPITA. In: Journal of Information Technol-
ogy Teaching Cases (6(2)), S. 67–74.

AWS (o. D.): Was ist eine API? – Anwendungsprogram-

mierschnittstelle? Hg. v. Amazon Web Services, Inc.
Online verfügbar unter https://aws.ama-
zon.com/de/what-is/api/, zuletzt geprüft am
11.01.2024.

Axmann, Bernhard; Harmoko, Harmoko (2020): Robotic
Process Automation: An Overview and Comparison
to Other Technology in Industry 4.0. In: 10th Inter-
national Conference on Advanced Computer Infor-
mation Technologies (ACIT), S. 559–562. DOI:
10.1109/ACIT49673.2020.9208907.

Baškarada, Saša; Nguyen, Vivian; Koronios, Andy
 (2020): Architecting Microservices: Practical Oppor-

tunities and Challenges. In: Journal of Computer
 Information Systems 60 (5), S. 428–436. DOI:
 10.1080/08874417.2018.1520056.

Berruti, Federico; Nixon, Graeme; Taglioni, Giambat-

tista; Whiteman, Rob (2017): Intelligent process au-
tomation: The engine at the core of the next-genera-
tion operating model. In: McKinsey & Company,
2017. Online verfügbar unter https://www.mckin-
sey.com/capabilities/mckinsey-digital/our-in-
sights/intelligent-process-automation-the-engine-at-
the-core-of-the-next-generation-operating-model,
zuletzt geprüft am 11.01.2024.

Blinowski, Grzegorz; Ojdowska, Anna; Przybylek,

Adam (2022): Monolithic vs. Microservice Architec-
ture: A Performance and Scalability Evaluation. In:
IEEE Access 10, S. 20357–20374. DOI:
10.1109/ACCESS.2022.3152803.

Brettschneider, Jennifer (2020): Bewertung der

Einsatzpotenziale und Risiken von Robotic Process
Automation. In: HMD 57 (6), S. 1097–1110. DOI:
10.1365/s40702-020-00621-y.

Bygstad, Bendik (2017): Generative Innovation: A Com-

parison of Lightweight and Heavyweight IT. In: Jour-
nal of Information Technology 32 (2), S. 180–193.
DOI: 10.1057/jit.2016.15.

Celonis (o. D.): Unser Unternehmen. Hg. v. Celonis.

Online verfügbar unter https://www.celo-
nis.com/de/company/, zuletzt geprüft am 10.03.2024.

Choi, Daehyoun; R’bigui, Hind; Cho, Chiwoon (2021):

Candidate Digital Tasks Selection Methodology for
Automation with Robotic Process Automation. In:
Sustainability 13 (16), S. 8980. DOI:
10.3390/su13168980.

Choi, Daehyoun; R'bigui, Hind; Cho, Chiwoon (2022):

Enabling the Gab Between RPA and Process Mining:
User Interface Interactions Recorder. In: IEEE Access
10, S. 39604–39612. DOI:
10.1109/ACCESS.2022.3165797.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 48

Da Costa, Diogo António Silva; Mamede, Henrique São;
Da Mira Silva, Miguel (2022): Robotic Process Au-
tomation (RPA) Adoption: A Systematic Literature
Review. In: Engineering Management in Production
and Services 14 (2), S. 1–12. DOI: 10.2478/emj-
2022-0012.

Dey, Sourav; Das, Arindam (2019): Robotic process au-

tomation: assessment of the technology for transfor-
mation of business processes. In: IJBPIM 9 (3),
Artikel 100927, S. 220–230. DOI:
10.1504/IJBPIM.2019.100927.

Doguc, Ozge (2020): Robot Process Automation (RPA)

and Its Future. In: Ümit Hacıoğlu (Hg.): Handbook of
research on strategic fit and design in business eco-
systems. Hershey, PA, USA: IGI Global Business
Science Reference (Advances in E-Business Re-
search (AEBR) book series), S. 469–492. Online ver-
fügbar unter https://www.researchgate.net/pro-
file/Ozge-Doguc-2/publication/338302068_Ro-
bot_Process_Automa-
tion_RPA_and_Its_Future/links/5f5772f592851c250
b9d23ad/Robot-Process-Automation-RPA-and-Its-
Future.pdf, zuletzt geprüft am 10.12.2023.

Dowalil, Herbert (2018): Grundlagen des modularen

Softwareentwurfs. Der Bau langlebiger Mikro- und
Makro-Architekturen wie Microservices und SOA
2.0. München: Hanser.

Drawehn, Jens; Krause, Tobias; Renner, Thomas; Kintz,

Maximilien (2022): Robotic Process Automation in
Versicherungsunternehmen. Erfahrungen und Best
Practices beim Einsatz von RPA: Fraunhofer-Gesell-
schaft. Online verfügbar unter https://www.digi-
tal.iao.fraunhofer.de/content/dam/iao/ikt/de/docu-
ments/RPA_in_Versicherungsunternehmen.pdf, zu-
letzt geprüft am 13.12.2023.

Eyerman, Stijn; Hur, Ibrahim (2022): Efficient Asyn-

chronous RPC Calls for Microservices: Death-
StarBench Study. DOI: 10.48550/arXiv.2209.13265.

Farley, David (o. D.): Modernes Software Engineering -

Bessere Software schneller und effektiver entwickeln
by David Farley. Hg. v. O’Reilly. Online verfügbar
unter https://www.oreilly.com/library/view/mo-
dernes-software-engineer-
ing/9783747506363/Text/k10.html, zuletzt geprüft
am 20.01.2024.

Fowler, Martin (2020): Domain Driven Design. Hg. v.

martinFowler.com. Online verfügbar unter
https://martinfowler.com/bliki/DomainDrivenDe-
sign.html, zuletzt geprüft am 15.04.2024.

Fowler, Martin; Lewis, James (2014): Microservices. a
definition of this new architectural term. Hg. v. mar-
tinFowler.com. Online verfügbar unter https://martin-
fowler.com/articles/micro-
services.html?source=post_page, zuletzt aktualisiert
am 25.03.2014, zuletzt geprüft am 16.11.2023.

Gartner (o. D.a): Definition of Architecture - Gartner In-

formation Technology Glossary. Hg. v. Gartner.
Online verfügbar unter https://www.gart-
ner.com/en/information-technology/glossary/archi-
tec-
ture#:~:text=IT%20architecture%20is%20a%20serie
s%20of%20principles%2C%20guidelines,communi-
cations%2C%20development%20methodolo-
gies%2C%20modeling%20tools%20and%20organi-
zational%20structures., zuletzt geprüft am
19.01.2024.

Gartner (o. D.b): Definition of Robotic Process Automa-

tion. Hg. v. Gartner. Online verfügbar unter
https://www.gartner.com/en/information-technol-
ogy/glossary/robotic-process-automation-software,
zuletzt aktualisiert am 11.12.2023, zuletzt geprüft am
11.12.2023.

GitLab (2022): What are the benefits of a microservices
 architecture? Hg. v. GitLab. Online verfügbar unter
 https://about.gitlab.com/blog/2022/09/29/what-are-

he-benefits-of-a-microservices-architecture/, zu- letzt
aktualisiert am 29.09.2022, zuletzt geprüft am

 23.01.2024.

Habibullah, Safa; Liu, Xiaodong; Tan, Zhiyuan; Zhang,

Yonghong; Liu, Qi (2019): Reviving Legacy Enter-
prise Systems with Micro service-Based Architecture
with in Cloud Environments. In: 8th International
Conference on Soft Computing, Artificial Intelligence
and Applications 9, S. 173–186. DOI:
10.5121/csit.2019.90713.

Hanussek, Marc (2019): RPA meets KI oder: wie intelli-

gente Softwareroboter Ihre Prozesse automatisieren.
Hg. v. Fraunhofer IAO - BLOG. Online verfügbar un-
ter https://blog.iao.fraunhofer.de/rpa-meets-ki-oder-
wie-intelligente-softwareroboter-ihre-prozesse-au-
tomatisieren/, zuletzt aktualisiert am 06.07.2021, zu-
letzt geprüft am 28.12.2023.

Hu, Chenglie (2023): An Introduction to Software De-

sign. Concepts, Principles, Methodologies, and Tech-
niques. 1st ed. 2023. Cham: Springer International
Publishing; Imprint Springer. Online verfügbar unter
https://link.springer.com/book/10.1007/978-3-031-
28311-6.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 49

IEEE Computer Society/Software & Systems Engineer-
ing Standards (2022): IEEE/ISO/IEC International
Standard for Software, systems and enterprise--Ar-
chitecture description. DOI:
10.1109/IEEESTD.2022.9938446.

Indrasiri, Kasun; Siriwardena, Prabath (2018): Micro-

services for the Enterprise. Designing, Developing,
and Deploying. 1st ed. 2018. New York: Apress
(Springer eBook Collection). Online verfügbar unter
https://link.springer.com/content/pdf/10.1007/978-

 1-4842-3858-5.pdf.

Institute for Robotic Process Automation & Artificial In-

telligence (o. D.): What is Robotic Process Automa-
tion? | IRPAAI. Hg. v. IRPA AI. Online verfügbar
unter https://irpaai.com/what-is-robotic-process-au-
tomation/, zuletzt aktualisiert am 11.12.2023, zuletzt
geprüft am 11.12.2023.

Ivančić, Lucija; Suša Vugec, Dalia; Bosilj Vukšić, Vesna

(2019): Robotic Process Automation: Systematic Lit-
erature Review 361, S. 280–295. DOI: 10.1007/978-
3-030-30429-4_19.

Jamshidi, Pooyan; Pahl, Claus; Mendonca, Nabor C.;
 Lewis, James; Tilkov, Stefan (2018): Microservices:
 The Journey So Far and Challenges Ahead. In: IEEE

Softw. 35 (3), S. 24–35. DOI:
10.1109/MS.2018.2141039.

Kalske, Miika; Mäkitalo, Niko; Mikkonen, Tommi

(2018): Challenges When Moving from Monolith to
Microservice Architecture. In: Irene Garrigós und
Manuel Wimmer (Hg.): Current Trends in Web Engi-
neering. ICWE 2017 International Workshops, Liq-
uid Multi-Device Software and EnWoT, practi-O-
web, NLPIT, SoWeMine ; Rome, Italy, June 5-8,
2017 ; revised selected papers, Bd. 10544. Cham:
Springer International Publishing (Lecture Notes in
Computer Science, 10544), S. 32–47. Online ver-
fügbar unter https://link.springer.com/chap-
ter/10.1007/978-3-319-74433-9_3.

Karnowski, Veronika (2013): Diffusionstheorie. In:

Wolfgang Schweiger und Andreas Fahr (Hg.): Hand-
buch Medienwirkungsforschung. Wiesbaden:
Springer VS, S. 513–528. Online verfügbar unter
https://link.springer.com/chapter/10.1007/978-3-
531-18967-3_27.

Khan, Ovais; Siddiqui, Nabil; Oleson, Timothy; Fussell,
 Mark (2021): Embracing Microservices Design. A
 practical guide to revealing anti-patterns and architec-

tural pitfalls to avoid microservices fallacies. 1st edi-
tion. Erscheinungsort nicht ermittelbar, Boston, MA:
Packt Publishing; Safari.

Kirchmer, Mathias (2017): Robotic Process Automation
- Pragmatic Solution or Dangerous Illusion? In:
BTOES Insights (Business Transformation and Oper-
ational Excellence Summit Insights). Online ver-
fügbar unter https://www.researchgate.net/publica-
tion/317730848_Robotic_Process_Automation_-
_Pragmatic_Solution_or_Dangerous_Illusion, zu-
letzt geprüft am 04.01.2024.

Koch, Oliver; Wildner, Stephan (2020): Intelligent Ro-

botic Process Automation. Konzeption eines Ord-
nungsrahmens zur Nutzung künstlicher Intelligenz
für die Prozessautomatisierung. In: Rüdiger Buchkre-
mer, Thomas Heupel und Oliver Koch (Hg.): Kün-
stliche Intelligenz in Wirtschaft & Gesellschaft. Aus-
wirkungen, Herausforderungen & Handlungsempfeh-
lungen. Wiesbaden, Heidelberg: Springer Gabler
(FOM-Edition), S. 211–230. Online verfügbar unter
https://link.springer.com/book/10.1007/978-3-658-
29550-9, zuletzt geprüft am 04.01.2024.

Köhler-Schute, Christiana (2020): Robotic Process Au-

tomation in Unternehmen. Praxisorientierte
Methoden und Vorgehensweisen zur Umsetzung von
RPA-Initiativen. Berlin: KS-Energy-Verlag.

Kokina, Julia; Blanchette, Shay (2019): Early evidence

of digital labor in accounting: Innovation with Ro-
botic Process Automation. In: International Journal
of Accounting Information Systems 35, S. 100431.
DOI: 10.1016/j.accinf.2019.100431.

Kroll, Christian; Bujak, Adam; Darius, Volker; Enders,

Wolfgang; Esser, Marcus (2016): Robotic Process
Automation - Robots conquer business processes in
back offices. A 2016 study conducted by Capgemini
Consulting and Capgemini Business Services. Hg. v.
Capgemini. Online verfügbar unter
https://www.capgemini.com/consulting-de/wp-con-
tent/uploads/sites/32/2017/08/robotic-process-auto-
mation-study.pdf, zuletzt geprüft am 04.01.2023.

Lal Sahni, Dhanik (2023): What is Microservice Archi-

tecture? Hg. v. Salesforcecodex. Online verfügbar un-
ter https://stories.salesforceco-
dex.com/2023/05/salesforce/what-is-microservice-
architecture/, zuletzt aktualisiert am 17.05.2023, zu-
letzt geprüft am 19.11.2023.

Langmann, Christian; Turi, Daniel (2021): Robotic Pro-

cess Automation (RPA) - Digitalisierung und Autom-
atisierung von Prozessen. Voraussetzungen, Funk-
tionsweise und Implementierung am Beispiel des
Controllings und Rechnungswesens. 2. Auflage.
Wiesbaden, Heidelberg: Springer Gabler.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 50

Lhuer, Xavier (2016): The next acronym you need to
know about: RPA (robotic process automation. Hg. v.
McKinsey. Online verfügbar unter
https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/the-next-acronym-you-need-to-
know-about-rpa, zuletzt geprüft am 13.05.2024.

Madakam, Somayya; Holmukhe, Rajesh M.; Kumar

Jaiswal, Durgesh (2019): The Future Digital Work
Force: Robotic Process Automation (RPA). In:
JISTEM 16, S. 1–17. DOI: 10.4301/S1807-
1775201916001.

Manning, Louise (2020): Moving from a compliance-

based to an integrity-based organizational climate in
the food supply chain. In: Comprehensive reviews in
food science and food safety 19 (3). DOI:
10.1111/1541-4337.12548.

Microsoft Learn (o. D.): Microservice-Architekturstil.

Hg. v. Microsoft Learn. Online verfügbar unter
https://learn.microsoft.com/de-de/azure/architec-
ture/guide/architecture-styles/microservices, zuletzt
aktualisiert am 19.11.2023, zuletzt geprüft am
19.11.2023.

Microsoft Learn (2023): Entwerfen einer an Micro-

service orientierten Anwendung. Hg. v. Microsoft
Learn. Online verfügbar unter https://learn.mi-
crosoft.com/de-de/dotnet/architecture/micro-
services/multi-container-microservice-net-applica-
tions/microservice-application-design, zuletzt aktu-
alisiert am 10.05.2023, zuletzt geprüft am
19.11.2023.

Moffitt, Kevin C.; Rozario, Andrea M.; Vasarhelyi, Mi-

klos A. (2018): Robotic Process Automation for Au-
diting. In: Journal of Emerging Technologies in Ac-
counting 15 (1), S. 1–10. DOI: 10.2308/jeta-10589.

Montemagno, James; Warren, Genevieve; Jain, Tarun;

Coulter, David; Veloso, Miguel et al. (2022): Com-
munication in a microservice architecture. Hg. v. Mi-
crosoft Learn. Online verfügbar unter

 https://learn.microsoft.com/en-us/dotnet/architec-
ture/microservices/architect-microservice-contai-ne-
rapplications/communication-in-microservicearchi-
tecture, zuletzt aktualisiert am 21.01.2024, zuletzt
geprüft am 21.01.2024.

Nadareishvili, Irakli; Mitra, Ronnie; McLarty, Matt;

Amundsen, Michael (2016): Microservice architec-
ture. Aligning principles, practices, and culture. First
Edition, Second Release. Beijing, Boston, Farnham,
Sebastopol, Tokyo: O´Reilly.

Newman, Sam (2020): Vom Monolithen zu Micro-

services. Patterns, um bestehende Systeme Schritt für
Schritt umzugestalten. Heidelberg: O'Reilly.

Newman, Sam (2021): Building microservices. Design-
ing fine-grained systems. Second edition. Beijing,
Boston, Farnham, Sebastopol, Tokyo: O'Reilly Me-
dia.

Niedermaier, Sina; Koetter, Falko; Freymann, Andreas;

Wagner, Stefan (2019): On Observability and Moni-
toring of Distributed Systems – An Industry Interview
Study. In: Sami Yangui, Ismael Bouassida Rodri-
guez, Khalil Drira, Zahir Tari und Pagination_Cover
(Hg.): Service-Oriented Computing. 17th Interna-
tional Conference, ICSOC 2019, Toulouse, France,
October 28–31, 2019, Proceedings, Bd. 11895. 1st ed.
2019. Cham: Springer (Springer eBooks Computer
Science, 11895), S. 36–52. Online verfügbar unter
https://link.springer.com/chap- ter/10.1007/978-3-
030-33702-5_3.

Průcha, Petr; Skrbek, Jan (2022): API as Method for Im-

proving Robotic Process Automation. In: Andrea
Marrella, Raimundas Matulevičius, Renata Gab-
ryelczyk, Bernhard Axmann, Vesna Bosilj Vukšić,
Walid Gaaloul et al. (Hg.): Business Process Manage-
ment: Blockchain, Robotic Process Automation, and
Central and Eastern Europe Forum. BPM 2022
Blockchain, RPA, and CEE Forum, Münster, Ger-
many, September 11–16, 2022, Proceedings. 1st ed.
2022. Cham: Springer International Publishing; Im-
print Springer (Lecture Notes in Business Infor-
mation Processing, 459). Online verfügbar unter
https://link.springer.com/chapter/10.1007/978-3-
031-16168-1_17.

PWC South Africa (o. D.): Robotic process automation.

Hg. v. PWC South Africa. Online verfügbar unter
https://www.pwc.co.za/en/services/consulting/ro-
botic-process-automation.html, zuletzt geprüft am
11.12.2023.

RedHat (2019): Wie funktioniert ein API-Gateway? Hg.

v. RedHat. Online verfügbar unter
https://www.redhat.com/de/topics/api/what-does-an-
api-gateway-do, zuletzt geprüft am 07.12.2023.

Santos, Filipa; Pereira, Rúben; Vasconcelos, José Braga

(2020): Toward robotic process automation imple-
mentation: an end-to-end perspective. In: BPMJ 26
(2), S. 405–420. DOI: 10.1108/bpmj-12-2018-0380.

SAP (o. D.): Was ist Prozessautomatisierung? Hg. v.

SAP. Online verfügbar unter
https://www.sap.com/germany/products/technology-
platform/process-automation/what-is-process-auto-
mation.html, zuletzt geprüft am 10.12.2023.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 51

Shidaganti, Ganeshayya; Salil, Sreya; Anand, Prarthana;
Jadhav, Vaishnavi (2021): Robotic Process Automa-
tion with AI and OCR to Improve Business Process:
Review. In: 2021 Second International Conference
on Electronics and Sustainable Communication Sys-
tems (ICESC), S. 1612–1618. DOI:
10.1109/ICESC51422.2021.9532902.

Singleton, Andy (2016): The Economics of Micro-

services. In: IEEE Cloud Comput. 3 (5), S. 16–20.
DOI: 10.1109/MCC.2016.109.

Syed, Rehan; Suriadi, Suriadi; Adams, Michael; Ban-

dara, Wasana; Leemans, Sander J.J.; Ouyang, Chun
et al. (2020): Robotic Process Automation: Contem-
porary themes and challenges. In: Computers in In-
dustry 115, S. 103162. DOI: 10.1016/j.com-
pind.2019.103162.

Taibi, Davide; Lenarduzzi, Valentina; Pahl, Claus

(2017): Processes, Motivations, and Issues for Mi-
grating to Microservices Architectures: An Empirical
Investigation. In: IEEE Cloud Comput. 4 (5), S. 22–
32. DOI: 10.1109/MCC.2017.4250931.

UiPath (o. D.): KI und RPA – die nächste Stufe der Au-

tomatisierung | UiPath. Hg. v. UiPath. Online ver-
fügbar unter https://www.uipath.com/de/automa-
tion/ai-and-rpa, zuletzt geprüft am 28.12.2023.

van der Aalst, Wil M. P.; Bichler, Martin; Heinzl, Armin

(2018): Robotic Process Automation. In: Bus Inf Syst
Eng 60 (4), S. 269–272. DOI: 10.1007/s12599-018-
0542-4.

Vitharanage, Imesha; Thibbotuwawa, Amila (2021): En-

terprise Robotic Process Automation. In: BPRM 01
(01), S. 10–12. DOI: 10.31705/BPRM.2021.2.

Wanner, Jonas; Hofmann, Adrian; Fischer, Marcus;

Janiesch, Christian; Imgrund, Florian; Geyer-
Klingebert, Jerome (2019): Process Selection in RPA
Projects – Towards a Quantifiable Method of Deci-
sion Making. In: Fortieth International Conference
on Information Systems. Online verfügbar unter
https://opus.bibliothek.uni-augsburg.de/opus4/front-
door/deliver/index/docId/95923/file/95923.pdf, zu-
letzt geprüft am 06.01.2024.

Willcocks, Leslie; Lacity, Mary; Craig, Andrew (2015):

The IT Function and Robotic Process Automation. In:
London School of Economics and Political Science.
Online verfügbar unter
https://eprints.lse.ac.uk/64519/1/OUWRPS_15_05_p
ublished.pdf, zuletzt geprüft am 10.12.2023.

Wolff, Eberhard (2018): Microservices. Grundlagen fle-

xibler Softwarearchitekturen. 2., aktualisierte Auf-

lage. Heidelberg: dpunkt.verlag.

Yousif, Mazin (2016): Microservices. In: IEEE Cloud

Comput. 3 (5), S. 4–5. DOI:

10.1109/MCC.2016.101.

Zhang, Chanyuan; Thomas, Chanta; Vasarhelyi, Miklos

A. (2021): Attended Process Automation in Audit: A

Framework and A Demonstration. In: Journal of In-

formation Systems 36 (2). DOI: 10.2308/ISYS-

2020-073.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 52

