Entwicklung einer integrierten Microservice-Architektur am Beispiel
von modularisierten RPA-Prozessen

Max-Arthur Klink

Hochschule Pforzheim
Tiefenbronnerstr. 65
75175 Pforzheim
klinkmax@hs-pforzheim.de

ABSTRACT

Frank Morelli

Hochschule Pforzheim
Tiefenbronner Straf3e 65
75175 Pforzheim
frank.morelli@hs-pforzheim.de

Die vorliegende Ausarbeitung untersucht die Entwicklung einer modularen Microservice-Architektur zur Optimierung von
Robotic Process Automation (RPA). Ziel ist es, Flexibilitét, Skalierbarkeit und Wartbarkeit zu verbessern, indem monoli-
thische RPA-Prozesse in unabhingige, wiederverwendbare Microservices aufgeteilt werden. Ein praxisnahes Implemen-
tierungsmodell adressiert dabei zentrale Anforderungen wie Modularitit, lose Kopplung und Resilienz. Die Differenzie-
rung zwischen wertgenerierenden und unterstiitzenden Microservices ermdglicht eine effiziente Prozessgestaltung, wéh-
rend ein zentraler Katalog und Orchestrierungswerkzeuge die Verwaltung und Integration erleichtern. Experteninterviews
lieferten fundierte Einblicke in die Priorisierung relevanter Architekturmerkmale. Die Ergebnisse zeigen, dass die entwi-
ckelte Architektur wesentliche Effizienzgewinne und eine erhohte Anpassungsfihigkeit ermoglicht. AbschlieBend wird die
Architektur hinsichtlich zentraler Mehrwerte evaluiert, und es werden konkrete Handlungsempfehlungen fiir zukiinftige

Anwendungen und Erweiterungen gegeben.

SCHLUSSELWORTER

Microservices; Robotic Process Automation (RPA);
Architektur; Modularisierung; Prozessautomatisierung;
Architekturprinzipien; Implementierung.

EINLEITUNG

Die Automatisierung von Geschéftsprozessen durch den
Einsatz von Robotic Process Automation (RPA) ist ein
zentraler und stetig wachsender Bereich in der IT-
Strategie vieler Unternehmen. Durch die Verwendung
dieser Technologie konnen standardisierbare Prozesse,
welche in der Komplexitét variieren, automatisiert wer-
den. Aktuell erfolgt die Analyse und Automatisierung
von Geschéftsprozessen jeweils getrennt voneinander.
Allerdings treten bei einer Vielzahl von Geschiftspro-
zessen Ahnlichkeiten im Hinblick auf Inhalte und
Struktur der darunter liegenden Teilprozesse auf. Dies
fiihrt haufig dazu, dass man innerhalb dieser Prozesse
dhnliche Funktionen bzw. gleiche Bestandteile verwen-
det. Die Automatisierung von Geschiftsprozessen ver-
folgt in diesem Fall einen monolithischen Ansatz. Dies
bedeutet, dass die gesamte Logik und Funktionalitét in-
nerhalb jedes einzelnen automatisierten Prozesses inte-
griert ist.

Die monolithische Struktur der aktuellen RPA-Prozesse
bringt verschiedene Herausforderungen mit sich, ins-
besondere hinsichtlich der Prozesswiederverwendbar-
keit und -wartbarkeit. Steigende oder sich dndernde An-
forderungen an die Automatisierung erfordern oft Anpas-
sungen mehrere Komponenten innerhalb eines Prozesses,
wodurch die Aktualisierung komplex und zeitaufwén-
dig ist. Anderungen an einzelnen Bestandteilen konnen
mehrere Prozesse betreffen, wodurch diese ebenfalls ge-
dandert werden miissen, was zusétzlich die Wartbarkeit
und Flexibilitdt der Prozesse einschrinkt. Dies zeigt den

Anwendungen und Konzepte der Wirtschaftsinformatik

Bedarf nach einer effizienteren Losung fiir die Konzipie-
rung von RPA-Prozessen auf.

Durch die Unterteillung der einzelnen Bestandteile der
Prozesse in unabhingige Microservices lassen sich zu-
kiinftig Funktionen und Komponenten separat entwi-
ckeln und bereitstellen. Damit soll eine einfachere War-
tung und Aktualisierung der gesamten Prozesslandschaft
erzielt werden, da man Anderungen nur noch in den be-
troffenen Microservices vornehmen muss und nicht in
jedem einzelnen automatisierten Prozess. Die Zielset-
zung des vorliegenden Artikels besteht in der Veran-
schaulichung einer Microservice-Architektur am Bei-
spiel von modularisierten RPA-Prozessen. Der
vorliegende Artikel untersucht die Thematik aus
folgender Forschungsperspektive:

1. Wie lassen sich Microservices katalogisieren?
2. Wie kann eine Microservice-Architektur im
RPA-Umfeld ausgestaltet werden?

ROBOTIC PROCESS AUTOMATION

Definition und Grundlagen

Bei Robotic Process Automation handelt es sich um eine
Art der Prozessautomatisierung. Unter der Prozessauto-
matisierung wird der Einsatz von Software und Techno-
logien zur Automatisierung von Geschéftsprozessen ver-
standen. Das Ziel der Prozessautomatisierung ist die Er-
reichung der Geschiftsziele, die Verbesserung der Ren-
tabilitdt und der Wettbewerbsfihigkeit der Unternehmen
(SAP o. D.). Der Begriff RPA kam erstmals im Jahr 2000
auf, fand jedoch bis zum Jahr 2012 kaum Verwendung
und erlangte erst dann an Bedeutung (Doguc 2020, S. 470
f.). Im Herbst 2015 befand sich RPA in der Phase der frii-
hen Mehrheit, was bedeutet, dass die Technologie bereits
von einer Vielzahl von Unternehmen eingesetzt wird

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 36

(Willcocks et al. 2015, S. 3; Karnowski 2013, S. 520).
Mit dem Verlauf der Jahre konnte ein signifikantes
Wachstum in diesem Bereich beobachtet werden (Doguc
2020, S. 471). Es gibt eine Vielzahl an Definitionen fiir
RPA. Der vorliegende Artikel basiert auf folgender Defi-
nition: ,,Bei RPA handelt es sich um eine Technologie,
die es Unternehmen ermdglicht, repetitive, zeitaufwin-
dige und regelbasierte Aufgaben zu automatisieren,
wodurch menschliche Mitarbeiter entlastet und die Effi-
zienz gesteigert wird.“ RPA trégt so zur Verbesserung
der Geschéftsprozesse und zur Erreichung strategischer
Unternehmensziele bei. Bei RPA handelt es sich um ein
Software-Programm mit dem Softwareroboter program-
miert werden konnen (Institute for Robotic Process Au-
tomation & Artificial Intelligence o. D.; Gartner o.
D.b; PWC South Africa o. D.; Langmann und Turi 2021,
S. 6). Diese Softwareroboter interagieren dabei mit der
Présentationsschicht anderer Programme. Sie verhalten
sich dabei wie ein Mensch gegeniiber der grafischen Be-
nutzeroberfliche des Systems, ohne andere Schichten zu
verwenden (Willcocks et al. 2015, S. 7 f.; van der Aalst et
al. 2018, S. 269). Moderne RPA-Ldsungen erweitern zu-
satzlich ihren Anwendungsbereich, indem sie neben der
grafischen Oberflichenautomatisierung auch die Integra-
tion von API-Aufrufen ermdglichen. Durch die Verkniip-
fung mit Backend-Systemen iiber APIs lassen sich so-
wohl Front-End- als auch Back-End-Automatisierungen
realisieren. Eine Studie hat zudem gezeigt, dass die Ver-
wendung von APIs im RPA-Kontext gegeniiber der rei-
nen GUI-Automatisierung zu empfehlen ist, da unter an-
derem die Ausfithrungsgeschwindigkeit gesteigert wer-
den kann (Pricha und Skrbek 2022, S. 260-262, 264, 267-
272; AWS 0. D.).

Der Abbildung 1 kann das RPA-Schichtmodell entnom-
men werden. Entsprechend der in der Literatur darge-
stellten Ansichten operiert RPA im Gegensatz zu anderen
Automatisierungslosungen prinzipiell auf der Prisentati-
onsschicht. Es ist jedoch anzumerken, dass insbesondere
neuere RPA-Systeme erweiterte Funktionen bieten, die
auch die Interaktion mit anderen Schichten, wie der Ge-
schiftslogik- und Datenebene, ermdglichen (Drawehn et
al. 2022, S. 14).

Presentation Layer » RPA Software

Business Logic Layer \

Other Types of
Automation-

/ Software

Data Access Layer

b1

Database

Abbildung 1: RPA-Schichtmodell Quelle: Eigene Darstellung
in Anlehnung an Dey und Das 2019, S. 222; Drawehn et al.
2022, 8. 14

Indem die RPA-Software auf den bestehenden Systemen

Anwendungen und Konzepte der Wirtschaftsinformatik

aufsetzt, kann es auf der vorhandenen Infrastruktur im-
plementiert werden, ohne dass Anderungen am IT-
Backend erforderlich sind (Willcocks et al. 2015, S. 7;
Berruti et al. 2017). Daraus folgt, dass RPA auf einen so-
genannten ,,outside-in“ Ansatz setzt, da das Informati-
onssystem unverdndert bleibt. In einem klassischen
sinside-out* Ansatz, wiren Anderungen am Informati-
onssystem die Folge (van der Aalst et al. 2018, S.
269, 271). Weiterhin ldsst sich RPA dem
"Lightweight IT“-Konzept zuordnen: Hierunter fallen
IT-Systeme, die unkompliziert auf die Bediirfnisse
erfahrener Nutzer reagieren, ohne auf komplexe und
umfassende IT-Infrastrukturen angewiesen zu sein (By-
gstad 2017, S. 182; Willcocks et al. 2015, S. 21 f.). In-
nerhalb von RPA kann man zwischen drei Typen unter-
scheiden: Attended, Unattended und Hybrides RPA
(Axmann und Harmoko 2020, S. 559).
Bei Attended RPA, auch als Robotic Desktop Automa-
tion (RDA) bezeichnet, kann ein Software-Roboter direkt
auf dem Desktop des Benutzers ausgefiihrt werden. Der
Benutzer ist in der Lage den Roboter zu starten, zu iiber-
wachen und mit ihm iiber einen Bildschirm zu intera-
gieren. Der Roboter seinerseits kann mit verschiedenen
Anwendungen interagieren wodurch sich verschiedene
Arbeitsschritte automatisieren lassen. Attended RPA fun-
giert wie ein personlicher Assistent, weil es bestimmte
Aufgaben libernimmt und ausfiihrt. Ein Nachteil von At-
tended RPA besteht darin, dass der Roboter den Com-
puter des Users bendtigt. Wihrend der Programmlauf-
zeit ist dieser dann nicht mehr in der Lage, seinen Com-
puter anderweitig zu verwenden (Langmann und Turi
2021, S. 6; Axmann und Harmoko 2020, S. 559). Eine Un-
tersuchung von Anwendungsszenarien ergibt, dass Aten-
ded RPA primér bei Prozessen zum Einsatz kommt, die
nicht komplett regelbasiert automatisierbar sind bzw. an
verschiedenen Stellen menschliche Entscheidungen be-
notigen. Ein Anwendungsfall fiir Attended RPA ist z.B.
die Wirtschaftspriifung. Innerhalb dieser sind viele Pro-
zesse unstrukturiert und kommen deshalb nicht ohne
menschliche Interaktion aus (Zhang et al. 2021, S. 5, 7
f).
Im Gegensatz zu Attended RPA bezeichnet Unattended
RPA einen RPA-Typen, bei dem die Software Roboter
statt auf dem Desktop des Benutzers, auf einem Server
bzw. auf einer virtuellen Maschine im Hintergrund aus-
gefiihrt werden. Sie konnen unabhéingig von Menschen
arbeiten und benodtigen meistens keine direkte Interaktion
mit diesen. Durch ihre Unabhéngigkeit lassen sie sich
auf Basis von einer vordefinierten Uhrzeit oder eines
festgelegten Triggers, wie der Erhalt einer E-Mail, auto-
matisch triggern. Unattended RPA-Roboter werden mit-
hilfe eines Orchestrators gesteuert und iiberwacht, eine
Schliisselkomponente von RPA-Systemen. Beleuchtet
man die Anwendungsfille fiir Unattended RPA néher, so
eignet sich dieser RPA-Typ besonders gut fiir regelba-
sierte Anwendungsfille. So lassen sich Anwendungs-
fille lassen sich im Rechnungswesen & Controlling
Bereich finden, wenn z.B. per E-Mail erhaltene Rech-
nungen automatisch nach gewissen Regeln verbucht wer-
den sollen (Zhang et al. 2021, S. 5, 7 f.; Langmann und
Turi 2021, S. 6 f.; Axmann und Harmoko 2020, S. 559;

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 37

Choietal. 2021, S.3 1))

Bei Hybridem RPA handelt es sich um eine Kombination
von Attended und Unattended RPA. Es eignet sich vor-
wiegend fiir komplexe Prozesse, bei denen ein Teil voll-
automatisiert ohne menschliche Interaktion ablduft, wih-
rend der andere Teil des Prozesses auf die Interaktion
mit einem Menschen angewiesen ist (Axmann und
Harmoko 2020, S. 559 f.).

Generell besteht ein RPA-System i.d.R. aus drei Haupt-
komponenten, dem RPA Studio, dem RPA Orchestrator
und den RPA-Robotern. Der Aufbau eines solchen Sys-
tems entnommen werden. Das RPA Studio représentiert
die Entwicklungsumgebung von RPA. Dort lassen sich
die Prozesse, welche in Form eines Bots ausgefiihrt
werden sollen, modellieren/ entwickeln und konfi-
gurieren werden. Ist ein Bot fertig entwickelt, wird
er dem Orchestrator tibergeben. Der Orchestrator dient
als zentrale Steuerungseinheit fiir die Verwaltung der
Bots. Konkretist er fiir die Planung, die Ausfiihrung
und das Monitoring der Bots zustéindig. Der Orchestrator
bietet in der Regel auch eine Schnittstelle, iiber die An-
wendungen von Drittanbietern die RPA-Roboter nut-
zen kdnnen. Die Roboter fithren dann die ihnen zugewie-
senen Aufgaben aus (Choi et al. 2021, S. 4).

RPA
RPA Studio RPA Robots
Orchestrator Scheduling

Deployment Execution

Abbildung 2 RPA-System Aufbau Quelle: Eigene Darstellung
in Anlehnung an Choi et al. 2021, S. 4

Einsatzbereiche

RPA findet in einer Vielzahl von Bereichen Verwen-
dung. Generell ist der Einsatz von RPA besonders ge-
eignet fiir die Automatisierung von Geschiftsprozessen,
die sich durch RegelmiBigkeit und Routinetdtigkeiten
auszeichnen. Weiter ist RPA geeignet fiir Prozesse, die
strukturierte Daten verarbeiten, durch ein hohes Volumen
gepragt sind und eine Interaktion mit mehreren IT-
Systemen iiber die Oberflache erfordern. RPA ist somit
besonders fiir Prozesse geeignet, die keine Kreativitdt
oder Interpretation erfordern (Da Costa et al. 2022, S. §;
Aguirre und Rodriguez 2017, S. 65 f., 70).

RPA findet in vielen unterschiedlichen Branchen An-
wendung. Besonders hiaufig wird RPA in Bereichen
wie IT, Personalwesen/HR, Versicherung, Buchhaltung
und Finanzen, Einzelhandel sowie in der Wirtschafts-
prifung eingesetzt (Santos et al. 2020, S. 406; Kokina
und Blanchette 2019, S. 1; Moffitt et al. 2018, S. 1, 9;
Zhang et al. 2021, S. 2; Madakam et al. 2019, S. 1, 13).
Die Aufgaben, die RPA dabei ausfiihrt, sind oft das sys-
tematische Erfassen und Uberpriifen von Daten, das Be-

Anwendungen und Konzepte der Wirtschaftsinformatik

arbeiten und Umstrukturieren von Dateien, das Anpas-
sen von Formaten sowie das Synchronisieren und Ab-
gleichen von Daten iiber mehrere Plattformen hinweg
(Alberth und Mattern 2017, S. 58). Die aufgefiihrten
Einsatzbereiche zeigen, dass RPA bereits eine tragende
Rolle in der Optimierung und Automatisierung von Ge-
schiftsprozessen einnimmt. Die Weiterentwicklung der
RPA-Funktionalitit erfolgt laufend, was unter anderem
durch die Innovationen und Entwicklungen innerhalb
des Informationstechnologiesektors vorangetrieben wird.
Als Aktuelle Trends lassen sich folgende Trends ermit-
teln: Artificial Intelligence (AI) bzw. kiinstliche In-
telligenz (KI), vermag die Effizienz zu steigern,
indem die Integration von KI-Technologien RPA auto-
nomer und dynamischer ausgestaltet. RPA kann hier-
durch selbststédndiger auf unterschiedliche Situationen
reagieren und Abldufe kombinieren. Ein Beispiel hier-
fiir ist die Verbesserung der Interaktion mit mensch-
lichen Benutzern, indem empfangene Nachrichten
korrekt interpretiert und automatisch beantwortet
werden (Hanussek 2019). Weiter kann KI eine Ver-
arbeitung von unstrukturierten Daten die Nutzung von
Spracherkennung, die Verwendung von maschinellem
Lernen und neuronalen Netzen im RPA Kontext ermog-
lichen. Neuronale Netze sind in der Lage, komplexe
Muster in Daten zu erkennen, wodurch sich an-
spruchsvollere Aufgaben automatisieren lassen (Ui-
Path o. D.; Kohler-Schute 2020, S. 29). Ein weiterer
aktueller Trend ist die Verbindung von Process
Mining mit RPA. Die Verwendung von Process Mi-
ning Software, wie z. B. Celonis, kann es Unternehmen
ermdglichen, Prozesse leichter und effizienter zu iden-
tifizieren, die fiir eine Automatisierung im Kontext von
RPA geeignet sind (Choi et al. 2022, S. 39604,
39611; Celonis o. D.). Ein weiterer aktueller Trend ist
die Untersuchung des Einsatzes von Blockchain
Technologien, z.B. bei Kryptowdhrungen wie Bitcoin
oder Ethereum. Die Verbindung zu RPA ermdglicht
es, Sicherheits- und Audit-Herausforderungen zu ad-
ressieren (Al-Slais und Ali 2023).

Vorteile und Herausforderungen

RPA hat sich als eine bedeutende Technologie innerhalb
der digitalen Transformation etabliert. Jedoch besitzt
RPA neben zahlreichen Vorteilen auch einige Herausfor-
derungen, die Unternehmen bewiltigen miissen, um best-
moglich von RPA zu profitieren.

Einer der wichtigsten Vorteile ist die erhebliche Effi-
zienzsteigerung, die Unternehmen durch die Nutzung
von RPA erreichen konnen. In einer Fallstudie wurde
analysiert, wie effizient eine Gruppe unter Verwendung
von RPA im Vergleich zu einer Gruppe ohne den Einsatz
von RPA arbeitet. In dem Team, welche RPA-Software
verwendet hat, konnten 21 % mehr Félle bearbeitet wer-
den als in der Vergleichsgruppe. Entsprechend eréffnet
dies Wertsteigerungspotenziale, indem Mitarbicter die
durch Automatisierung gewonnene Zeit fiir wichtigere
und komplexere Aufgaben nutzen konnen. Im Rahmen
der genannten Fallstudie ist allerdings zu ergéinzen, dass
die Gruppe mit RPA nicht signifikant schneller waren

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 38

als die ohne RPA (Aguirre und Rodriguez 2017, S. 68-70;
Shidaganti et al. 2021, S. 1). Ein weiterer Vorteil von
RPA fiir Unternehmen sind die damit verbundenen Kos-
teneinsparungen, welche unter anderem durch die Au-
tomatisierung der Geschiftsprozesse entstehen. Diese
Kosteneinsparungen ergeben sich zum einen daraus, dass
man Mitarbeiter gezielter und effizienter einsetzen kann
aufgrund der Automatisierung von Routinetétigkeiten.
Zusitzliche Einsparungen ergeben sich dadurch, dass
RPA die Fehlerquote bei Aufgaben wie der Dateneingabe
signifikant reduzieren kann. Hierdurch sinken die Fehler-
behebungskosten und zeitgleich steigt die Qualitét der
auszufithrenden Arbeit (Ivanci¢ et al. 2019, S. 280, 282,
287 ,290; Kirchmer 2017, S. 2 f.; Asatiani und Penttinen
Esko 2016, S. 4). Zusitzlich kann ein Roboter im Gegen-
satz zu einem Mitarbeiter rund um die Uhr (24/7) arbei-
ten. Eine Studie aus dem Jahr 2016 zeigt auf, dass die Kos-
ten fiir einen RPA-Roboter nur ein Drittel bis ein Fiinftel
der Kosten eines Vollzeitmitarbeiters betragen kdnnen
(Kroll et al. 2016, S. 12; Asatiani und Penttinen Esko
2016, S. 4). Konkret konnen Unternehmen mit einer
durchschnittlichen Kosteneinsparung von ca. 25 % rech-
nen. Der Break-Even-Point von RPA wird dabei meistens
schon im ersten Jahr nach der Einfithrung erreicht, mit ei-
nem potenziellen Return on Investment (ROI) von 30 bis
200 % (Koch und Wildner 2020, S. 214; Lhuer 2016).
Ein weiterer Vorteil von RPA ist die Erh6hung der Com-
pliance. Dies ldsst darauf schlielen, dass es fiir Unterneh-
men durch den Einsatz von RPA relativ einfach ist, sich
an vorgegebene Regeln im Unternehmen zu halten und
so ihre Gesamt-Compliance zu verbessern (Ivanci¢ et al.
2019, S. 282). Ein weiterer Vorteil von RPA besteht da-
rin, dass generell keine fortgeschrittenen Programmier-
kenntnisse bendtigt werden, um einfache RPA-Roboter
zu erstellen. Hinzu kommt, dass RPA von den Unterneh-
men ohne grofere Anpassungen in die aktuelle IT-
Landschaft integriert werden kann, da RPA nur auf dieser
aufsetzt (Langmann und Turi 2021, S. 1, 8, 11).

Trotz der aufgezeigten Vorteile von RPA in Bezug auf
Effizienzsteigerung und Kostenoptimierung sind auch
spezifische Herausforderungen vorhanden. So eignet
sich RPA nicht fiir alle Prozesse. RPA-Roboter sind nicht
in der Lage, eigenstindig Entscheidungen zu treffen. Aus
diesem Grund stellen komplexe, unstrukturierte und stark
variierende Prozesse eine Herausforderung fiir RPA-
Roboter dar. Daraus kann abgeleitet werden, dass eine
sorgfiltige Analyse, Auswahl und Dokumentation der zu
automatisierenden Prozesse innerhalb eines Unterneh-
mens zu Beginn essenziell ist (Choi et al. 2021, S. 2 f;
Wanner et al. 2019, S. 2, 5; Langmann und Turi 2021, S.
14-16; Brettschneider 2020, S. 1103). Des Weiteren kann
die Instandhaltung der RPA-Roboter fiir Unternehmen
eine signifikante Herausforderung darstellen. RPA-
Prozesse erfordern eine kontinuierliche Wartung, da
selbst geringfiigige Anderungen in den mit dem Prozess
verbundenen Systemen und insbesondere in den Ober-
flichen, oft Anpassungen an den RPA-Robotern not-
wendig machen. Prozesse, die haufige Anpassungen
bendtigen, sind besonders fehleranfillig, was zu er-
hohtem Wartungs- und Kostenaufwand fithren kann

Anwendungen und Konzepte der Wirtschaftsinformatik

(Langmann und Turi 2021, S. 14; Santos et al. 2020, S.
413). Je mehr Roboter im Einsat sind, desto hoher
wird auch der gesamte Wartungsaufwand innerhalb der
RPA-Umgebung fiir ein Unternehmen (Brettschneider

2020, S. 1107). Durch die Automatisierung von
Aufgaben, diezuvorvon menschlichen Mitarbeitern aus-
gefilhrt wurden, entfdllt zukiinftig ein Teil dieser
Tétigkeiten aufgrund des Einsatzes von RPA. Da-
raus resultiert eine Herausforderung im Sinne der
Workforce Resilience, d.h. des Widerstands der Mit-
arbeiter gegeniiber dieser Technologie. Es besteht
die Gefahr, dass diese befiirchten, durch RPA
ersetzt zu werden, was zu erhdhten Angsten hin-
sichtlich Entlassungen fiihrt. Unternehmen miissen
rechtzeitig die Mitarbeiter in den Prozess der RPA-
Einfilhrung einbeziehen und ein geeignetes Change
Managementbetreiben. Beispielsweise sollten geeig-
nete Losungswege und Fortbildungsmdglichkeiten auf-
gezeigt werden, um die RPA Einfiihrung nicht zu ge-
fahrden (Syed et al. 2020, S. 8; Brettschneider 2020, S.
1104 f.; Santos et al. 2020, S. 414; Kohler-Schute 2020,
S. 22). Weiterhin lésst sich das Management der Skalier-
barkeit als potenzielles Problem identifizieren. So
kann es innerhalb von RPA zu Schwierigkeiten kom-
men, wenn man versucht, eine einzelne Anwendung un-
ternehmensweit auszurollen. Daher sollte bereits zu
Beginn der Einfilhrung ein Konzept beziiglich der
Infrastruktur erarbeitet werden, um am Ende die
gewlinschte Skalierbarkeit und Stabilitdit der RPA-
Umgebung erreichen zu konnen (Syed et al. 2020, S. 12;
Langmann und Turi 2021, S. 61).

MICROSERVICES

Definition und Grundlagen

Viele Unternehmen stehen vor der Herausforderung, dass
ihre IT-Landschaften nicht mehr zeitgemdB sind. Dies
liegt daran, dass sie zu einer Zeit implementiert wurden,
als Aspekte wie Modularisierung noch nicht im Fokus
standen. Dies erfordert eine Verdnderungsbereitschaft,
um wettbewerbsfahig bleiben zu konnen (Dowalil 2018,
S. 17 f.; Habibullah et al. 2019, S. 1 f.). Dieser Wandel
spiegelt sich insbesondere in der Entwicklung der Soft-
ware-Architektur wider. In der Vergangenheit waren
monolithische Architekturen, bei denen die gesamte
Software als ein einziger grofer Codeblock umge-
setzt wurde, weitverbreitet. Dieser umfangreiche
Block erfiillte funktionale und nicht-funktionale Anfor-
derungen, was als Resultat eine enge Verkniipfung zwi-
schen den einzelnen Bestandteilen mit sich brachte.
Diese Herangehensweise wird jedoch, besonders bei zu-
nehmender Komplexitit, unwirtschaftlich, kosteninten-
siv und zeitaufwindig. Der Grund dafiir liegt in erhdhten
Ressourcenaufwénden und verldngerten Entwicklungs-
zeiten. Entsprechend wurden modulare Architekturen
entwickelt, um groBere Flexibilitdt und Skalierbarkeit zu
erzielen (Yousif 2016, S. 4; Kalske et al. 2018, S.
32 f). In diesem Zusammenhang spielte die "Service-
Oriented Architecture" (SOA) eine bedeutende Rolle.
SOA ist eine Architekturform, bei der die Systemland-
schaft in einzelne, unabhéngige Services zerlegt wird.

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 39

Jeder Service ist dabei genau fiir eine Geschéfts-
aufgabe zustdndig. Diese Services werden innerhalb
eines Netzwerks verteilt und kommunizieren tiber defi-
nierte Schnittstellen, wodurch eine lose Kopplung zwi-
schen ihnen entsteht. Unter einer losen Kopplung wird
die Minimierung der Verbindungen zwischen einzel-
nen Softwarekomponenten verstanden. Dies impliziert,
dass zwischen den verschiedenen Bestandteilen einer
Software moglichst wenige Abhéngigkeiten bestehen
sollten, damit z. B. in Fehlerfillen nicht das ganze
System betroffen ist. Aufbauend auf den Konzepten
von SOA haben sich Microservices als eine modulare
Unterart bzw. als ein spezifischer Typ einer "Service-
Oriented Architecture”" entwickelt. (Dowalil 2018, S.
25-29, 121 f, 196; Newman 2020, S. 1).Heutzutage
gewinnen Microservices zunehmend an Popularitit und
werden bereitsvon einer Vielzahl von Unternehmen im-
plementiert (Taibi et al. 2017, S. 23). Wird die
Definition eines Microservices betrachtet, so ist festzu-
stellen, dass bisher keine einheitliche Definition
existiert. Auf Basis der Definitionen von Fowler und
Lewis sowie der Definition von Newman lésst sich
jedoch eine allgemeine Charakterisierung ableiten:
Microservices sind kleine, unabhéngige und lose gekop-
pelte Einheiten, die jeweils eine spezifische Funktion
oder Aufgabe erfiillen. Sie kommunizieren iiber geeig-
nete Schnittstellen miteinander und sind stark gekapselt,
was ihre unabhéngige Verdffentlichung und Wartung er-
moglicht. Wenn in einem System mehrere solcher
Microservices zusammenarbeiten, spricht man von
einer Microservice-Architektur. Betrachtet man die
Grofe eines Microservices ndher, so konnte der Begriff
,Micro® eine geringe Grofle suggerieren. Allerdings gibt
es keine klar definierte GroBe fiir einen Microservice.
Die tatsichliche GroBe hingt stark vom jeweiligen
Kontext ab, weshalb ein einzelner Service nicht
zwingend klein sein muss (Fowler und Lewis 2014;
Newman 2020, S. 1, 9 f.; Nadareishvili et al. 2016, S.
65 f.) Abbildung 3 zeigt den beispielhaften Aufbau und
die Funktionsweise einer solchen.

G)
'
JR—
@
vamer)
T 2 R .
S I A A S
= o alog arment L
% = - 5
| !

UseDB Proouans s sy

Abbildung 3 Microservice-Architektur Quelle: Eigene Darstel-
lung in Anlehnung an Microsoft Learn o. D., 2023, Lal Sahni
2023

In einer Microservice-Architektur greifen Benutzer iiber
eine Benutzeroberfldche auf die Software zu, die im Hin-
tergrund tiber ein API-Gateway mit den bendtigten
Microservices kommuniziert. Das API-Gateway leitet
Anfragen weiter und koordiniert die Antworten. Ein Bei-

Anwendungen und Konzepte der Wirtschaftsinformatik

spiel hierfiir ist der Authentifizierungsservice, der den
Benutzerlogin als eigenstdndigen Microservice abwi-
ckelt. Microservices sind unabhéngig voneinander entwi-
ckelbar und skalierbar. Skalierbarkeit erfolgt entweder
vertikal durch die Erweiterung der Ressourcen einer Ma-
schine oder horizontal durch die Verteilung der Arbeits-
last auf mehrere Systeme (RedHat 2019; AWS o. D;
Blinowski et al. 2022, S. 20360).

Architekturprinzipien

Fiir die effektive Integration von Microservices in ein
System sind bestimmte Architekturprinzipien unerldss-
lich, um ihr volles Potenzial zu entfalten. Laut der
IEEE/ISO/IEC 42010-2022 Norm beschreibt eine Archi-
tektur das zentrale Konzept und die charakteristischen
Merkmale einer Einheit in einem definierten Umfeld. Sie
enthélt alle notwendigen Informationen fiir Implementie-
rung und Weiterentwicklung. Gartner ergénzt diese De-
finition, indem die verwendete Hardware, Software und
Kommunikationsmechanismen als entscheidende Be-
standteile der Architektur hervorgehoben werden (IEEE
Computer Society/Software & Systems Engineering
Standards 2022; Gartner o. D.a).

Das erste zentrale Architekturprinzip von Microservices
ist die Modularitit. Dabei wird ein System in klar abge-
grenzte Module aufgeteilt, die durch ihre externen Eigen-
schaften, insbesondere ihre Schnittstellen, definiert sind.
Diese Schnittstellen ermoglichen die Interaktion zwi-
schen den Modulen. Ein wichtiger Aspekt der Modulari-
tat ist die Austauschbarkeit von Modulen. Ein Modul
kann durch ein anderes ersetzt werden, solange es diesel-
ben Eigenschaften aufweist. Jedes Modul sollte zudem
leicht weiterentwickelbar sein und iiber eine eigene Do-
kumentation verfiigen (Dowalil 2018, S. 2 f.). Ein weite-
res wichtiges Architekturprinzip ist die Kontextgrenze,
auch ,,Bounded Context™ genannt, die aus dem Domain-
Driven Design stammt. Dieser Softwareentwicklungsan-
satz zielt darauf ab, Software entlang der Prozesse und
Regeln einer bestimmten Domidne zu entwickeln. Die
Kontextgrenze definiert klare Grenzen fiir ein Modul
oder eine Microservice-Komponente und stellt sicher,
dass das Modell innerhalb dieser Grenzen einheitlich und
konsistent bleibt. Dabei geht es nicht nur um die Bereit-
stellung einer spezifischen Funktionalitdt, sondern auch
darum, die interne Komplexitét zu verbergen, sodass ex-
terne Systeme keinen Zugriff auf interne Details erhalten
(Newman 2021, S. 52 f., 58 £.,2020, S. 31; Dowalil 2018,
S. 64 f.; Fowler 2020). Um die Modularitét in einer Ar-
chitektur effektiv umzusetzen, spielen ebenfalls Soft-
ware-Design-Prinzipien wie Separation of Concerns und
das Single Responsibility Principle eine zentrale Rolle.
Das Prinzip der Separation of Concerns besagt, dass jede
Funktion eines Systems in einem eigenstindigen Bau-
stein realisiert werden sollte. Im Kontext von Microser-
vices bedeutet dies, dass jede Funktionalitdt als eigen-
standiger Service abgebildet wird. Das Single Responsi-
bility Principle ergénzt dieses Konzept, indem es sicher-
stellt, dass jeder Microservice nur eine spezifische Ver-
antwortlichkeit hat. Dadurch existiert fiir jeden Service
nur einen Grund fiir Anderungen, was die Wartbarkeit
und Weiterentwicklung vereinfacht (Dowalil 2018, S. 31

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 40

ff.; Hu 2023, S. 107). Das zweite wichtige Architektur-
prinzip ist die lose Kopplung. Grundsétzlich beschreibt
die Kopplung die Abhéngigkeiten zwischen den Baustei-
nen einer Architektur. Im Kontext von Microservices be-
deutet lose Kopplung, dass die einzelnen Services nur
minimale Informationen iibereinander besitzen und wei-
testgehend unabhingig agieren. Konkret heif3t das, dass
Anderungen an einem Service keine oder nur minimale
Auswirkungen auf andere Services haben sollten. Eine
stabile Struktur zeichnet sich dadurch aus, dass sie starke
Kohision und schwache Kopplung aufweist. Kohdsion
beschreibt das MaB, in dem die Komponenten innerhalb
eines Moduls eng miteinander verbunden und auf eine
gemeinsame Funktionalitdt ausgerichtet sind. Eine hohe
Kohésion fordert die Wartbarkeit und Weiterentwicklung
der Module, da die Funktionen eines Moduls klar defi-
niert und aufeinander abgestimmt sind (Newman 2020,
S. 17; Dowalil 2018, S. 25; Newman 2021, S. 38 f;
Farley o. D.). Neben der Modularitét und der losen Kopp-
lung ist die Autonomie der Services ein weiteres ent-
scheidendes Prinzip. Die Autonomie ldsst sich aus zwei
Perspektiven betrachten. Zum einen sollten verschiedene
Teams in der Lage sein, im Rahmen einer gemeinsamen
Governance (Shared Governance) eigenstindig Services
zu entwickeln und bereitzustellen. Das bedeutet, dass
diese Teams volle Verantwortung fiir die Entwicklung
und Verwaltung ihrer Services tragen. Zum anderen soll-
ten die Microservices selbst ebenfalls autonom sein. Dies
erfordert, dass jeder Service so gestaltet ist, dass er unab-
héngig und in sich geschlossen funktioniert. Dadurch
kann ein Microservice losgeldst von anderen Services
entwickelt, veroffentlicht und betrieben werden, was die
Flexibilitdt und Skalierbarkeit der gesamten Architektur
erheblich steigert (Khan et al. 2021, S. 7). Ein weiteres
zentrales Architekturprinzip von Microservices betrifft
die Kommunikation zwischen den einzelnen Services.
Microservices interagieren iiber Schnittstellen (APIs),
die eine entscheidende Rolle im System spielen, da sie
die interne Kommunikation zwischen den Services er-
moglichen. Um eine lose Kopplung zu gewihrleisten,
sollten diese Schnittstellen lediglich die Informationen
bereitstellen, die fiir die Interaktion mit anderen Services
notwendig sind. Dies reduziert Abhéngigkeiten und for-
dert die Unabhéngigkeit der einzelnen Microservices
(Dowalil 2018, S. 123). Im Kontext von Microservices
hat sich hier das Designprinzip ,,smart endpoints and
dumb pipes™ durchgesetzt. Jeder Microservice fungiert
dabei als eine Art Filter. Er empfangt Anfragen, verarbei-
tet sie mit der entsprechenden Logik und liefert das ent-
sprechende Ergebnis zuriick. Die Kommunikation zwi-
schen den Services wird dabei mdglichst einfach gehal-
ten, ohne komplexes Anfragenrouting oder Datentrans-
formationen. Zur Kommunikation werden hauptséchlich
zwei Protokolle verwendet: HTTP fiir synchrone Kom-
munikation, bei der eine Anfrage und eine direkte Ant-
wort erfolgen, und Lightweight Messaging fiir asyn-
chrone Kommunikation {iber einen Nachrichtenbus
(Alpers et al. 2015, S. 73; Fowler und Lewis 2014;
Dowalil 2018, S. 74 f.; Montemagno et al. 2022). Obwohl
das Designprinzip ,,smart endpoints and dumb pipes” die
Komplexitit reduziert und eine einfache Kommunikation

Anwendungen und Konzepte der Wirtschaftsinformatik

zwischen den Services fordert, bleibt die Moglichkeit
von Fehlern bestehen. Diese konnen durch menschliches
Versagen oder technische Stérungen verursacht werden.
Dabher ist Resilienz ein zentraler Aspekt beim Entwurf ei-
ner Microservice-Architektur. Resilienz beschreibt die
Fahigkeit eines Systems, trotz auftretender Fehler weiter
zu funktionieren und sich schnell zu erholen. Das Ziel
ist es, dass bei einem Fehler nicht das gesamte System
ausfillt, sondern nur die betroffenen Bereiche beeintrich-
tigt werden, wihrend der Rest des Systems weiterhin
funktionsfdhig bleibt. Zur Unterstiitzung der Resilienz
konnen Mechanismen wie Timeouts implementiert wer-
den. Dabei wird festgelegt, dass eine Serviceanfrage in-
nerhalb einer bestimmten Zeit beantwortet werden muss.
Bleibt diese aus, wird der Service alsausgefallen be-
trachtet (Indrasiri und Siriwardena 2018, S. 42; Wolff
2018, S. 207 f.). Damit ein reibungsloser Betrieb in
einer Microservice-Architektur gewihrleistet werden
kann, sind Monitoring- und Logging-Funktionalita-
ten unerldsslich. Logging ermdglicht es, Ereignisse in
den einzelnen Services nachzuvollziehen, was nicht nur
fiir die Erstellung von Statistiken, sondern vor allem fiir
die effiziente Fehlersuche von zentraler Bedeutung ist.
Log-Dateien sind in der Regel so strukturiert, dass sie
von Menschen leicht interpretiert werden koénnen.
Durch Monitoring konnen wichtige Metriken wie die
Antwortzeiten der Services und die Anzahl fehlge-
schlagener Anfragen kontinuierlich {iberwacht werden.
Diese Informationen sind entscheidend, um frithzeitig
Probleme zu identifizieren und die Systemstabilitét si-
cherzustellen (Wolff 2018, S. 244 f.; Indrasiri und Siri-
wardena 2018, S. 48 f., 373; Khan et al. 2021, S. 8).
Aufgrund der erhohten Netzwerkkommunikation in einer
Microservice-Architektur ist es essenziell, dass nur
autorisierte Parteien Zugriff auf die Services haben.
Daher sollten Microservices nur die minimal bendtigten
Rechte besitzen, insbesondere bei Datenbankzugriffen
und sensiblen Ressourcen. Ein effizientes Identity-
und Access Management (IAM) ist unerlédsslich, um
sicherzustellen, dass ausschlieBlich autorisierte Nutzer
und Services auf die Microservices zugreifen konnen.
Zudem miissen Zugangsdaten wie E-Mails und Passwor-
ter sicher gespeichert werden und diirfen nicht im Klar-
text vorliegen, um Sicherheitsrisiken zu vermeiden
(Newman 2021, S. 29, 345-347, 354-456).

Vorteile und Herausforderungen

Microservices bieten gegeniiber monolithischen Archi-
tekturen zahlreiche Vorteile, jedoch besitzen sie auch
Herausforderungen. Ein wesentlicher Vorteil besteht in
der Unterstiitzung agiler Arbeitsweisen, die es Unternch-
men ermdglicht, schneller auf verdnderte Geschéftsan-
forderungen zu reagieren. Innerhalb einer Microservice-
Architektur lassen sich neue Services leichter entwi-
ckeln, bereitstellen und testen, was eine hohere Flexibi-
litdt sowie schnellere Iterationen ermdglicht. Falls ein neu
entwickelter Service nicht den gewiinschten Anforderun-
gen entspricht, kann dieser mit geringem Aufwand
deaktiviert und durch eine alternative Implementierung
ersetzt werden. Diese Agilitdt verkiirzt die Entwick-

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 41

lungszeit von Microservices erheblich, was es den Ent-
wicklerteams ermoglicht, flexibler und schneller auf
Marktverdnderungen zu reagieren. Dadurch kdnnen Un-
ternehmen ihre Innovationszyklen beschleunigen und
Wettbewerbsvorteile erzielen (Indrasiri und Siriwardena
2018, S. 14; Nadareishvili et al. 2016, S. 14-16; Khan et
al. 2021, S. 11). Ein weiterer Vorteil von Microservices
ist die verbesserte Wartbarkeit. Dank der modularen und
unabhéngigen Struktur lassen sich Services leichter war-
ten. Da die Logik und Datenhaltung innerhalb der Ser-
vices erfolgt, sind keine externen Abhingigkeiten not-
wendig. Updates betreffen somit nur den jeweiligen Ser-
vice, wihrend der Rest des Systems unverdndert
bleibt. Dies fordert nicht nur die Wartbarkeit, sondern
auch die langfristige Nachhaltigkeit der Softwareent-
wicklung, da veraltete Systemstrukturen vermieden und
eine zukunftsfahige IT-Infrastruktur geschaffen wird
(Khan et al. 2021, S. 11; Eyerman und Hur 2022, S. 1;
Wolff 2018, S. 60-62). Neben der Wartbarkeit ermdgli-
chen Microservices Unternehmen, neue Features und
Bugfixes schneller zu verdffentlichen. Die Unabhéng-
igkeit der Entwicklungsteams tragt dazu bei, da sie ohne
Abhingigkeit von anderen Teams effizienter arbeiten
konnen. Zudem erlaubt die Microservice-Architektur den
Entwicklern, moderne Technologien zu nutzen, ohne an
veraltete Entscheidungen gebunden zu sein. Ein weiterer
Vorteil ist die Skalierbarkeit: Microservices kdnnen indi-
viduell skaliert werden, ohne das gesamte System anpas-
sen zu miissen. Dies ermdglicht eine effiziente Nutzung
von Ressourcen, indem Services bei steigenden Anfragen
hoch- und bei sinkenden Anfragen wieder herunterska-
liert werden, ohne die Performance zu beeintrachtigen
(Khan et al. 2021, S. 11, 12; Wolff 2018, S. 64 f., 66 f.;
GitLab 2022). Trotz der Vorteile wie gesteigerte Agili-
tiat, verbesserte Wartbarkeit, verkiirzte Time-to- Mar-
ket und erhohter Skalierbarkeit miissen auch die Heraus-
forderungen von Microservices beriicksichtigt werden.
Eine zentrale Herausforderung ist die erhdhte Komplexi-
tat, die durch die Vielzahl autonomer und lose gekop-
pelter Komponenten entsteht. Insbesondere die Inter-Ser-
vice-Kommunikation erfordert effiziente und zuverlds-
sige Kommunikationswege, die oft komplexer sind als die
Entwicklung der Services selbst. Auch das Daten- und
Transaktionsmanagement wird durch die verteilte Logik
und Datenhaltung anspruchsvoller. Zusitzlich ist bereits
die Definition und Erstellung der Services eine Heraus-
forderung. Um eine effektive Modularisierung sicherzu-
stellen, miissen Unternehmen klar identifizieren, welche
Funktionalitdten als eigenstindige Module umgesetzt
werden sollten. Falsch definierte Servicegrenzen kon-
nen zu erhdhtem Datenaustausch iiber das Netzwerk fiih-
ren, was wiederum die Kopplung zwischen den Services
verstirkt und der Grundidee der losen Kopplung wider-
spricht (Indrasiri und Siriwardena 2018, S. 15 f.; Jams-
hidi et al. 2018, S. 31).

Auch das Monitoring der Services stellt eine Herausfor-
derung dar. Durch die Verteilung der Microservices kann
es schwierig sein, den Uberblick iiber die Beziehungen
zwischen den einzelnen Services zu behalten. Die auto-

Anwendungen und Konzepte der Wirtschaftsinformatik

nome Struktur der Services, die zudem in unterschiedli-
chen Technologien implementiert sein konnen, macht ein
umfassendes Logging- und Monitoringkonzept unerléss-
lich. Dies wird zusétzlich dadurch erschwert, dass Micro-
services oft von unterschiedlichen Teams entwickelt wer-
den. Eine weitere Herausforderung sind die Kosten bei
der Einfiihrung einer Microservice-Architektur, die vor
allem in der Anfangsphase hoch ausfallen kdnnen. Diese
resultieren unter anderem aus der Notwendigkeit, die be-
stehende Infrastruktur zu erweitern, etwa durch den Aus-
bau des Netzwerks, zusétzlichen Speicherplatz oder die
Implementierung zusétzlicher Software. Zudem miissen
wahrend der Migration die monolithischen Systeme pa-
rallel zu den neuen Microservices betrieben werden, was
den Aufwand weiter erhoht. Ein weiterer Faktor sind die
verzogerten Entwicklungsprozesse zu Beginn der Um-
stellung, da sich Entwickler zunichst an die neuen Struk-
turen und Arbeitsabldufe gewdhnen miissen. Abhingig
vom Erfahrungsgrad der Entwickler kénnen zusétzliche
Kosten fiir die Einstellung von Fachkraften mit Micro-
service-Kenntnissen entstehen. Trotz dieser Anfangskos-
ten sollten Microservices jedoch als strategische Investi-
tion betrachtet werden, die langfristig Effizienzsteigerun-
gen und Flexibilitdt fordern (Niedermaier et al. 2019, S.
42-44; Khan et al. 2021, S. 14; Baskarada et al. 2020, S.
6; Newman 2021, S. 26-28; Singleton 2016, S. 17).

USECASE

Vorgehensweise Experteninterviews

Zur Erfassung der Anforderungen an die zu entwickelnde
Microservice-Architektur wurden leitfadenbasierte Ex-
perteninterviews durchgefiihrt. Ziel dieser Interviews
war es, relevante Anforderungen zu identifizieren und
wertvolle Einblicke aus der Praxis zu gewinnen, die aus
anderen Quellen nur schwer zu ermitteln wiren. Der In-
terviewleitfaden ist in drei Bereiche unterteilt:

1. Allgemeine Informationen der Experten: Zu-
néchst wurden Fragen gestellt, um den Hinter-
grund der Experten zu erfassen und ihre Erfah-
rungen im jeweiligen Unternehmenskontext
besser einzuordnen.

2. Kenntnisse iiber Microservices und Robotic
Process Automation (RPA): In diesem Ab-
schnitt wurden die Experten zu ihrer Einschat-
zung hinsichtlich verschiedener relevanter The-
menbereiche innerhalb einer Microservice-Ar-
chitektur befragt. Dabei sollten sie die Ziele, die
mit einer solchen Architektur verfolgt werden
konnen, nach Wertbeitrag und Realisierbarkeit
priorisieren, um die Anforderungen praxisnah
und umsetzbar zu gestalten.

3. Spezifische Anforderungen an die Architektur:
Abschlieend wurde ein tieferer Einblick in die
spezifischen Erwartungen und Anforderungen
der Experten gewonnen. Hierbei lag der Fokus
auf den wichtigsten Mehrwerten fiir die zukiinf-
tige Architektur sowie auf potenziellen Metho-
den zur Realisierung und Katalogisierung der
Microservices.

Die Interviews wurden per Videokonferenz durchge-
fiihrt, um eine strukturierte Erhebung der Anforderungen

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 42

sicherzustellen.

Ergebnisse der Experteninterviews

Die befragten Experten setzten sich aus Beratern und
Entwicklern zusammen, was zu unterschiedlichen An-
sichten fiihrte. Die Interviews zeigten, dass das Verstind-
nis von Microservices und RPA variiert. Einige Experten
sehen RPA als Werkzeug zur Automatisierung von
Frontend-Prozessen, wihrend andere eine breitere Defi-
nition verwenden, die auch die Automatisierung von Pro-
zessen in Systemen ohne native Automatisierungsfunkti-
onen umfasst. Beim Thema Microservices reichten die
Auffassungen von einer einfachen modularen Architek-
tur bis hin zur Weiterentwicklung der serviceorientierten
Architektur (SOA), die komplexere Systemarchitekturen
ermoglicht. Ein zentrales Ergebnis der Interviews ist die
Identifikation der Hauptziele bei der Implementierung ei-
ner Microservice-Architektur im RPA-Umfeld. Dabei
wurden Skalierbarkeit, Flexibilitdt, Wartbarkeit und Per-
formance als zentrale Prioritéten genannt. Aulerdem be-
werteten die Experten die potenziellen Mehrwerte nach
Wertbeitrag und Realisierbarkeit, was eine systematische
Rangordnung ermdglichte. Besonders hoch evaluiert
wurden die Mehrwerte ,,Wiederverwendbarkeit”, ,, Wart-
barkeit”, ,,Skalierbarkeit®”, ,,Ersetzbarkeit” und ,,Flexibi-
litdt“. Diese spielen eine entscheidende Rolle bei der Ar-
chitektur entwicklung (siche Tabelle 1). Ein weiterer
Schwerpunkt der Untersuchung lag auf der Analyse, wie
die einzelnen Expertengruppen, insbesondere Entwickler
und Berater, die Mehrwerte unterschiedlich bewerten.
Hier zeigte sich eine weitgehende Ubereinstimmung der
Top-5-Mehrwerte beider Gruppen. Jedoch wurden Un
terschiede hinsichtlich der Gewichtung einzelner Mehr-
werte beobachtet: Wihrend Entwickler vermehrt die ,,Sta-
bilitdt“ der Systeme in den Vordergrund stellten, legten
Berater einen stirkeren Fokus auf die ,,Flexibilitdt® der
Architektur.

Tabelle 1 Top-Mehrwerte Quelle: Eigene Darstellung

Reihenfolge Top-Mehrwerte Gesamtpunktzahl durch Experten

1
) _ ‘Wartbarkeit - NJ)
3 Skalierbarkeit 501
4 Eretbacket a4
5 Flexibilitat 480
6 Testbarkeit 428
7 Performance 403
8 Stabiltiit 396
A I ..

10 Integrationsfahigkeit 224
11 Time-to-Market 146

n Compliance und Govenance 128
13 Administrierbarkeit 104
14 Sicherheit 92

Die detaillierte Analyse der Mehrwertbewertungen ver-
deutlicht, dass insbesondere die ,,Wiederverwendbar-
keit” und ,,Wartbarkeit” von allen Experten als sehr rele-
vant eingestuft wurden. Dies ldsst sich darauf zuriickfiih-
ren, dass diese Eigenschaften eine langfristige Kostener-
sparnis und hohere Effizienz bei der Wartung und Erwei-
terung der Architektur ermdglichen. Die Unterschiede
zwischen Entwicklern und Beratern in der Priorisierung
anderer Merkmale, wie ,,Stabilitdt* versus ,,Flexibilitat®,
lassen sich durch die jeweiligen Rollen und Verantwort-
lichkeiten der Experten erkldren. Entwickler fokussieren

Anwendungen und Konzepte der Wirtschaftsinformatik

sich in ihrer Arbeit héufig auf die technische Umsetzbar-
keit und die Gewdhrleistung der Systemstabilitdt, wah-
rend Berater strategische Faktoren wie Anpassungsfahig-
keit und Skalierbarkeit im Kontext zukiinftiger Anforde-
rungen stirker gewichten.

Zusammenfassend lésst sich festhalten, dass die Exper-
teninterviews wertvolle Einblicke in die unterschiedli-
chen Finschiatzungen und Prioritdten hinsichtlich der
Mehrwerte von Microservices und RPA liefern. Die Er-
gebnisse deuten darauf hin, dass trotz unterschiedlicher
beruflicher Hintergriinde zentrale Mehrwerte von allen
Expertengruppen dhnlich hoch gewichtet werden. Dies
legt nahe, dass bestimmte Eigenschaften, wie Wartbar-
keit und Wiederverwendbarkeit, als universell bedeutend
fir die Implementierung von Microservice-Architektu-
ren in Verbindung mit RPA gelten.

Anforderungen und Anpassung der Architekturprin-
zipien

Die abgeleiteten Anforderungen an eine Microservice-
Architektur im RPA-Umfeld werden auf Basis eines ka-
tegorienbasierten Ansatzes abgeleitet. In der Kategorie
»Entwicklung und Design® stechen Modularitdt, Wieder-
verwendbarkeit, Flexibilitit und lose Kopplung im Vor-
dergrund, um die Anpassungsfahigkeit und Effizienz der
Architektur zu maximieren. Im Bereich ,Betrieb und
Wartung* werden die Wartbarkeit, einfache Verwaltung
und umfassende Dokumentation hervorgehoben, um eine
langfristig stabile und pflegeleichte Architektur sicher-
zustellen. Fiir die Kategorie ,,Performance und Qualitét*
waren vor allem Skalierbarkeit, Stabilitdt und Robustheit
von zentraler Bedeutung, da diese eine hohe Effizienz und
Zuverldssigkeit auch unter variierenden Bedingungen
garantierten. In der Kategorie ,,Governance und Compli-
ance” liegt der Fokus auf der Entwicklung von Richtli-
nien, einer Katalogisierung der Microservices sowie der
Verantwortung fiir die Einhaltung von Standards und de-
ren regelmiBiger Uberpriifung.

Die zuvor beschriebenen Anforderungen werden durch
angepasste Architekturprinzipien in der Microservice-
Architektur fiir RPA abgebildet. Da RPA-Microservices
noch einen neuen Ansatz darstellen, miissen die allge-
meinen Prinzipien fiir Microservices an die spezifischen
Gegebenheiten angepasst werden.

Die Modularitdt ist so anzupassen, dass die RPA-
Microservices flexibel, leicht austauschbar und wieder-
verwendbar sind. In der Architektur wird dies dadurch
umgesetzt, dass jedes Modul iiber wenige Parameter (wie
Modulname und Inputparameter) aufgerufen werden
kann. Durch diese Struktur konnen einzelne Module
nahtlos durch andere mit denselben Eigenschaften ersetzt
werden.

Das Prinzip des Bounded Contexts wird iibernommen,
um sicherzustellen, dass die Komplexitit der Automati-
sierungsprozesse verborgen bleibt. In der Architektur
wird dies durch die prdzise Abgrenzung der RPA-
Microservices erreicht, sodass jeder Service eine spezifi-
sche Aufgabe iibernimmt, ohne Details seiner internen
Funktionsweise nach auflen preiszugeben. Dies verstarkt
die Anwendung der Prinzipien Separation of Concerns

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 43

und Single Responsibility: Diese stellen sicher, dass je-
der Microservice eine klar abgegrenzte Funktion er-
fiillt. In der Architektur bedeutet dies, dass RPA-Mi-
croservices als isolierte, unabhingig operierende Einhei-
ten entworfen werden, was die Wartbarkeit und Integra-
tion erleichtert.

Die lose Kopplung wird dahingehend angepasst, dass
RPA-Microservices moglichst unabhéngig voneinander
agieren. In der Architektur erfolgt die Umsetzung durch
die Schaffung von isolierten Automatisierungsprozessen,
die nur minimale Abhéngigkeiten zu anderen Prozessen
aufweisen. Dies ermdglicht es, Anderungen an einem
RPA-Prozess vorzunehmen, ohne dass andere Prozesse
oder der Gesamtprozessfluss beeintrdchtigt werden, so-
lange die definierten Schnittstellen (Input- und Output-
parameter) unverdndert bleiben. Trotz der engen Integra-
tion mit den zu automatisierenden Systemen bleibt die
lose Kopplung durch die klare Trennung der Automatisie-
rungsaufgaben bestehen.

Die Autonomie der Services wird ebenfalls angepasst.
Jeder RPA-Service ist so konzipiert, dass er unabhéngig
von anderen Services betrieben und veroffentlicht wer-
den kann. In der Architektur wird dies durch den Einsatz
von einer Orchestrierungssoftware unterstiitzt, die die
Koordination der RPA-Services ermoglicht. Dadurch
konnen die RPA-Services flexibel in unterschiedliche
Geschiftsprozesse integriert und wiederverwendet wer-
den, was die Autonomie und Skalierbarkeit der Architek-
tur erhoht. Die Prinzipien der Resilienz, Monitoring und
Logging werden so angepasst, dass sie den spezifischen
Anforderungen von RPA entsprechen. In der Architek-
tur erfolgt die Abbildung durch die Nutzung von RPA-
Plattformen und Orchestrierungsumgebungen, die Me-
chanismen zur Uberwachung des Zustands und der Per-
formance der RPA-Prozesse bieten. Diese Systeme er-
moglichen es, Fehlerszenarien aufzuzeichnen und die
Stabilitit der Microservices sicherzustellen. Logging
und Monitoring werden genutzt, um Aktivititen nach-
zuvollziehen und fiir Compliance- und

Audit-Zwecke zu protokollieren. Beim Identity Manage-
ment wird das Prinzip angepasst, um eine sichere Verwal-
tung von Zugriffsrechten in der Architektur zu gewéhr-
leisten. Die Umsetzung erfolgt durch die in RPA- und
Orchestrierungsplattformen integrierten Losungen, die
sicherstellen, dass nur autorisierte Nutzer und Systeme
auf bestimmte Ressourcen zugreifen kdnnen. Die sichere
Speicherung von Zugangsdaten erfolgt dabei durch ver-
schliisselte Verfahren, um die Sicherheit der Architektur
weiter zu erhohen.

Microservice-Architekturentwurf

Aufbau und Komponenten

Die entwickelte Microservice-Architektur bildet die
Grundlage fiir die Modularisierung von RPA-Prozessen
und zielt darauf ab, eine flexible, skalierbare, modulare,
ersetzbare, wiederverwendbare und wartbare Umgebung
zu schaffen.

Die Architektur unterscheidet zwischen zwei Arten von
Microservices:

e Wertgenerierende Microservices: Diese Ser-

Anwendungen und Konzepte der Wirtschaftsinformatik

vices verarbeiten Daten nach festen Regeln und
liefern ein messbares Ergebnis, z. B. das Verar-
beiten einer Excel-Tabelle und das Bereitstellen
eines neuen Outputs.

* Nicht-wertgenerierende Microservices: Diese
Services unterstiitzen den Gesamtprozess, tra-
gen jedoch nicht direkt zum Endergebnis bei,
wie z. B. die Authentifizierung an Systemen.

Im RPA-Kontext ist diese Unterscheidung wichtig, da
nach jedem abgeschlossenen Prozess eine erneute Au-
thentifizierung erforderlich ist. Die Architektur sieht da-
her vor, nicht-wertgenerierende Services als standardi-
sierte Module bereitzustellen, die zentralisiert angepasst
werden konnen.

Wertgenerierende Microservices werden hingegen als ei-
genstindige RPA-Prozesse umgesetzt. Jeder Prozess fun-
giert als eigenstindiger Microservice, der spezifischen
Input verarbeitet und daraufhin einen entsprechenden
Output generiert. Diese Services werden iiber ein Or-
chestrierungstool genutzt, wobei die Gesamtprozessmo-
dellierung in einem Business Process Automation Tool
erfolgt. Die Kommunikation erfolgt dabei iiber zuvor
vordefinierte Schnittstellen, die den Prozessoutput zu-
riickgeben.

Katalogisierung

Die Anzahl der Microservices kann in Unternehmen
schnell steigen, besonders bei dezentralen Organisati-
onsstrukturen. Ein zentraler Katalog bietet hierbei
eine hilfreiche Ubersicht zu Funktionalititen und Zu-
standigkeiten der Microservices. Der ausgearbeitete Ka-
talog dient der Verwaltung und Weiterentwicklung
und basiert auf den gefithrten Experteninterviews. Zu
den zentralen Katalogelementen gehdren grundlegende
Informationen wie der Servicename, eine klare Be-
schreibung der Entwickler und Verantwortlichen. Diese
Daten helfen, Zustindigkeiten zu kldren und SLAs
festzulegen. Technische Details wie Inputparameter,
erwarteter Output und Abhéngigkeiten ermoglichen
eine klare Nutzungsiibersicht. Wichtig ist es, dort die
aktuelle Version sowie die letzte Anderung zu dokumen-
tieren, inklusive einer Verlinkung zu weiterfithrenden
Informationen (z.B. einer Wiki-Seite). Fiir die Umset-
zung bietet sich eine Tabellenstruktur in einer Wiki-
Umgebung wie Confluence an, um die Ubersichtlich-
keit zu wahren. Mit steigender Anzahl an Microser-
vices wird die Nutzung eines Marktplatzes empfohlen.
Ein Beispiel ist der UiPath-Marktplatz, bei dem Ser-
vices nach Kategorien filterbar sind. Eine mogliche
Umsetzung kann z.B. mit dem Open-Source-Tool
»Backstage* von Spotify erfolgen, das {tiber einen
zentralen Softwarekatalog Metadaten und Abhéngig-
keiten von Microservices verwaltet und visualisieren
kann.

Governance und Maintenance

Governance definiert die Richtlinien und Standards, die
fiir den Betrieb und die Verwaltung der Architektur not-
wendig sind. Wartung bezieht sich auf die kontinuierliche
Aktualisierung und Optimierung der Microservices, um

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 44

deren Leistung und Zuverldssigkeit sicherzustellen. Es
wird eine Shared Governance empfohlen, bei der Teams
innerhalb eines festgelegten Rahmens selbststédndig Ent-
scheidungen treffen kénnen und Verantwortung fiir ihre
Microservices {ibernehmen. Dabei sind klare Standards,
insbesondere in Bezug auf Sicherheit, Dokumentation
und Zugriffsrichtlinien, von zentraler Bedeutung. Jeder
Microservice sollte modular, skalierbar und nur mit dem
notwendigen Funktionsumfang ausgestattet sein. Bereits
bestehende Monitoring- und Logging-Systeme sollten
genutzt und nach einer Testphase bewertet werden. Um
die Einhaltung der Standards sicherzustellen, wird die
Einrichtung eines Governance-Komitees vorgeschlagen,
das als zentrale Anlaufstelle fungiert und die Implemen-
tierung der Richtlinien {iberwacht. Microservices sind
regelméfig zu tberpriifen und zu optimieren, beispiels-
weise je nach Art des Services halbjéhrlich oder jéhr-
lich. Diese Uberpriifungen sollten durch automatisierte
Tests unterstiitzt werden, die regelméBig erfolgen. Zu-
satzlich wird empfohlen, Schulungs- und Weiterbil-
dungsprogramme fiir Mitarbeiter anzubieten, um ein tie-
feres Verstindnis von Microservices, den zugrundelie-
genden Technologien und Best Practices im gesamten
Unternehmen zu fordern. Dies trdgt nicht nur zur Ver-
besserung der fachlichen Kompetenz bei, sondern unter-
stiitzt auch die fortlaufende Optimierung der Architektur.

Integration

Die bestehende Beispiel-Infrastruktur nutzt UiPath als
RPA-Tool und Flowable als BPA-Tool. Diese beiden
Systeme spielen eine zentrale Rolle bei der Integration im
Bebauungsplan.

Die Architektur unterscheidet zwischen wertgenerieren-
den und nicht-wertgenerierenden Microservices. Fiir
wertgenerierende Microservices wird ein vierstufiges
Modell verwendet, das aus den Schichten Workflow,
Orchestrator, Automation Control Center und Automa-
tion Bot besteht. Die Workflow-Schicht stellt die Ge-
samtprozessmodellierung in Flowable dar, wo Prozesse
nach dem BPMN 2.0-Standard modelliert werden.
UiPath Microservices werden in den Workflow integriert
und lassen sich iiber eine Service-Task ansteuern. Diese
Service-Task kommuniziert iiber einen Konnektor mit
dem UiPath Orchestrator und fithrt API-Aufrufe aus, um
den entsprechenden RPA-Prozess zu starten. Der
Konnektor informiert bei Fehlern und bietet eine Restart-
Option, um die Robustheit der Prozesse zu gewahrleis-
ten. Sobald der UiPath Orchestrator den Aufruf erhilt,
wird ein Warteschlangenobjekt angelegt. Die Automa-
tion Control Center Schicht verarbeitet Prozesse in einer
Warteschlange, um die begrenzte Anzahl an Robotern
optimal nutzen zu konnen. Dadurch wird verhindert, dass
Prozesse gleichzeitig gestartet werden und zu Systemab-
stlirzen fiihren. Die Priorisierung von Prozessen ist ein
integraler Bestandteil, wobei zehn Priorititsstufen zur
Verfiigung stehen, von ,kritisch® bis ,,niedrig®. Dies er-
moglicht eine effiziente und gesteuerte Bearbeitung der
Aufgaben. Sobald ein Prozess ausgefiihrt wird, erfolgt die
Riickgabe der Ergebnisse an den Orchestrator, der die
Informationen an Flowable weiterleitet. Durch diese
Riickmeldung kann der Workflow fortgesetzt werden.

Anwendungen und Konzepte der Wirtschaftsinformatik

Weiterhin sind Parallelisierungen innerhalb des Modells
moglich, um die Effizienz der Prozesse zu maximieren.
Abbildung 4 zeigt den Aufbau der Microservice-Archi-
tektur fiir wertgenerierende Microservices.

Abbildung 4 Wertgenerierende Microservice-Architektur
Quelle: Eigene Darstellung

Der zweite Teil der Microservice-Architektur (Abbil-
dung 5) konzentriert sich auf die Bereitstellung nicht-
wertgenerierender Microservices in Form von wiederver-
wendbaren Modulen. Diese Module erfiillen unterstiit-
zende Funktionen, die zwar keinen direkten Mehrwert
schaffen, aber fiir die Umsetzung von Geschéftsprozes-
sen notwendig sind wie z.B. System-Authentifi-
zierungen. Eine effiziente Implementierung dieser
Module lésst sich durch den Einsatz von UiPath-Biblio-
theken realisieren, die eine standardisierte Bereitstellung
solcher Prozesse ermdglichen und somit zur Konsistenz
und Wiederverwendbarkeit in der gesamten Architektur
beitragen. Die Architektur der Bibliotheken besteht aus
zwei zentralen Bereichen: der Entwicklung und der Ak-
tualisierung. Zunéchst werden die Module als eigenstan-
dige Prozesse innerhalb einer Bibliothek entwickelt, wo-
bei jedes Modul eine spezifische Funktionalitit abbildet,
die es in den Geschiftsprozessen erfiillen soll. Ein Bei-
spiel hierfiir ist ein Authentifizierungsprozess, der als ei-
genstéindiges Modul in eine Bibliothek integriert wird.
Diese Modularisierung ermoglicht eine flexible Wieder-
verwendung der Prozesse in unterschiedlichen Kontex-
ten. Nach der Entwicklung werden die Module umfas-
send getestet, um sicherzustellen, dass sie fehlerfrei
funktionieren. AnschlieBend wird die Bibliothek ver6f-
fentlicht, sodass die Module in weiteren Prozessen im-
portiert und verwendet werden konnen. Um eine
flexible Handhabung der Module zu gewdhrleisten,
lassen sich Parameter wie Argumente, Assets oder
Dropdown-Meniis definieren, durch die notwendige
Informationen dynamisch in das Modul iibergeben
werden. Dies erhoht die Flexibilitét bei der Anwendung
der Module, da sie ohne Anderungen an ihrer Struktur in

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 45

verschiedenen Prozessen genutzt werden konnen. Der
zweite wesentliche Aspekt der Architektur betrifft den
Aktualisierungsprozess der Bibliotheken. Im RPA-
Umfeld konnen selbst kleine Anderungen an Systemober-
flichen zu Fehlern fithren, weshalb eine regelméBige
Anpassung und Wartung der Module erforderlich
ist. Um dies effizient zu gestalten, miissen sich Biblio-
theken einfach aktualisieren lassen. Dazu wird das
Modul in der Bibliothek angepasst, erneut getestet und
nach erfolgreicher Priifung erneut veroffentlicht. An-
schliefend erfolgt die Aktualisierung aller Prozesse,
welche die Bibliothek nutzen, mithilfe eines Mas-
senupdatetools. Dieses Tool ermdglicht es, alle be-
troffenen Prozesse automatisch auf die neueste
Version der Bibliothek zu aktualisieren, wodurch der
manuelle Aufwand und die Fehleranfélligkeit erheblich
reduziert werden. Insgesamt ermdglicht die Bereitstel-
lung und Verwaltung wiederverwendbarer Module
in einer Microservice-Architektur eine hohe Flexibili-
tait und Effizienz. Durch die klare Trennung zwischen
wertgenerierendenund unterstiitzenden Prozessen wird
die Architektur modularer und leichter wartbar. Die
Verwendung von Bibliotheken spielt hierbei eine
zentrale Rolle, da sie nicht nur die Wiederverwend-
barkeit und Standardisierung fordern, sondern auch die
unkomplizierte Wartung und Aktualisierung von Pro-
zessen in dynamischen Umgebungen sicherstellen.

Abbildung 5 Nicht-wertgenerierende Microservice Architek-
tur Quelle: Eigene Darstellung

Bewertung der Use Case Architektur

Fiir die Evaluierung der Microservice-Architektur wird
das visuelle Hilfsmittel der Harvey Balls verwendet.
Diese ermoglichen eine differenzierte Darstellung des
Erfiillungsgrads der zuvor erhobenen Anforderungen.
Ein leerer Kreis (o) steht fiir Nichterfiillung, ein vollstin-
dig ausgefiillter Kreis (@) steht fiir die vollstdndige Erfiil-
lung. Zwischen diesen beiden Extremen ermdglichen die
Abstufungen von 25 % (®), 50 % (@) und 75 % (@) eine
feinere Differenzierung der Erfiillungsgrade an die Ar-
chitektur.

Anwendungen und Konzepte der Wirtschaftsinformatik

Tabelle 2 Harvey Balls Skala Quelle: Eigene Darstellung

Skala Erfiillungsgrad Beschreibung
. Die Architektur bietet akiuell keine Unterstiitzung, um
cht e D
O Nicht erfiillt (0 %) diese spezifische Anforderung zu erfullen
Es existieren initiale Eigenschafien oder Komponenten in
™ Ansat-weise erfiillt (25 % der Architektur, durch welche die Anforderung in einem
ANEITIENOEIT GEV L2 70 grundlegenden Umfang erfullt werden, jedoch sind wei-
tere Entwicklungen und Optimierungen notwendig
Die Architektur erfullt diese Anforderung in einigen, je-
c doch nicht allen Aspekten. Die aktuelle Losung adressiert
Teilweise erfillt (50 %, . 4
o exlwesss er/ail %) die grundlegenden Bedarfnisse, doch es besteht noch er-
heblicher Bedarf an Verbesserungen
Die Architektur erfullt die Anforderung in den meisten
punkten effel Cleinere O erunger . eite-
Y Uberwiegend erfills (75 %) PUAKen effekiiv. Kleinere Optimierungen oder Erweite
X rungen konnten jedoch noch implementiert werden, um
eine vollstandige und umfassendere Losung zu bieten.
Die Architektur erfullt die Anforderung vollstandig und
® Vollstandig erfiillt (100 %) zuverlassig mit allen notwendigen Funktionen, die zur op-

timalen Erfullung benotigt werden. Keine weiteren Ver-
besserungen sind erforderlich.

Nachfolgend werden die einzelnen Bewertungen kurz er-
lautert:

Wiederverwendbarkeit (®): Die Architektur unterstiitzt
konkret zwei Arten von Wiederverwendbarkeit. Zum ei-
nen die Wiederverwendbarkeit in Form von Bibliothe-
ken, zum anderen die Wiederverwendbarkeit von ganzen
Services. Hierdurch unterstiitzt die vorgestellte Architek-
tur die Anforderung der Wiederverwendbarkeit vollum-
fanglich.

Wartbarkeit (@): Die vorliegende Architektur erleich-
tert die Wartbarkeit der Prozesse. Zukiinftig muss nur
noch an einer Stelle die Bibliothek oder der Service ge-
andert werden, anstatt jeden Prozess einzeln anzupassen.
Im Kontext von Bibliotheken ist zwar weiterhin die Ver-
wendung eines Update Tools notwendig, dennoch wird
die Wartbarkeit durch die Architektur deutlich verbessert.
Skalierbarkeit (@): Die Skalierbarkeit wird durch die
Verwendung von Warteschlangen optimiert, dennoch ist
die Skalierbarkeit primédr im UiPath Kontext durch die be-
grenzte Roboterverfiigbarkeit bzw. durch das Lizenzmo-
dell weitestgehend eingeschrénkt.

Ersetzbarkeit (o): Die Architektur besitzt durch das Kon-
zept der Microservices eine addquate Ersetzbarkeit. Es ist
moglich einzelne Services in der Flowable Prozesskette
oder Bibliotheksmodule innerhalb der Ui-Path Prozess-
kette auszutauschen. Die einzige Voraussetzung fiir einen
anpassungsfreien Austausch ist, dass Input und Output
identisch sind.

Flexibilitit (@): Die Architektur zeigt sich anpassungs-
féhig durch die Unterscheidung zwischen wertgenerie-
renden und nicht-wertgenerierenden Microservices, so-
wie durch die Verwendung eines Orchestrierungstools
wie Flowable. Diese Strukturierung ermoglicht es, zu-
kiinftig auch Microservices anderer Systeme zu integrie-
ren, was die Flexibilitdt weiter steigert. Es ist allerdings
zu beachten, dass starre/feste Prozessabldufe und zu spe-
zifisch gestaltete Prozesse die Flexibilitdt einschrinken
konnen.

Testbarkeit (®): Die Architektur fordert und erweitert
die Testbarkeit, indem sie das separate Testen einzelner
Module ermdglicht. Dies bedeutet, dass man jeden Mi-
croservice individuell und isoliert auf seine Funktionali-
tat priifen kann, was zu einer hohen Testbarkeit fiihrt. Je-
doch ist unklar, wie Integrationstests also Test, die auf das
Zusammenspiel zwischen den einzelnen Microservices

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 46

innerhalb des Systems abzielen, realisiert werden kdnnen.
Dies erweist sich als relevant, da unterschiedliche Sys-
teme innerhalb der Prozesse verwendet werden.
Performance (®): Die Performance lésst sich nicht ge-
nau bewerten, da dies iiber einen ldngeren Zeitraum beo-
bachtet und anhand der dadurch gewonnenen Daten be-
wertet werden sollte. Dennoch stellt die Verwendung von
Warteschlangen innerhalb der Architektur eine prakti-
kable Losung fiir die Lastenverteilung dar, was auf eine
gute Performance hindeuten kann.

Stabilitit (®): Die Stabilitdt der Architektur ist vorran-
gig an die Stabilitdt der Systeme und Prozesse gebunden,
weshalb sich eine Bewertung ebenfalls als schwierig er-
weist. Die Architektur ist offen fiir Mechanismen, welche
die Stabilitdt fordern, wie der bereits eingebaute Restart
Mechanismus im Fehlerfall. Solche Mechanismen sind
wichtig, um bei Ausféllen oder Fehlern die Funktionalitit
der Prozesse aufrecht zu erhalten und schnelle Wiederan-
laufe zu ermdglichen. Allerdings miissen weitere Mecha-
nismen eingefiihrt werden, um die Stabilitét sicherzustel-
len.

Fehlerbehebungsmoglichkeiten (®): Die Fehlerbehe-
bungsmoglichkeiten sind durch den implementierten
Restart-Mechanismus innerhalb der Architektur beriick-
sichtigt worden, was die Resilienz gegeniiber Storungen
erhoht. Diese Moglichkeiten sind jedoch in hohem Mafle
von den spezifischen Prozessen abhéngig. Daraus folgt,
dass ohne detaillierte Kenntnisse iiber die einzelnen Pro-
zessablaufe eine vollstindige Bewertung der Fehlerbehe-
bungsfahigkeit nicht moglich ist.

Integrationsfihigkeit (e): Die Architektur bietet eine
hohe Integrationsfahigkeit, was durch die klar definierte
Schnittstelle zwischen dem Orchestrierungstool und der
RPA-Umgebung gewihrleistet wird. Zudem ermdglicht
die modulare Gestaltung eine flexible Einbindung neuer
Dienste und die Erweiterung bestehender Funktionalita-
ten ohne groBere Anderungen an der Gesamtarchitektur.
Die Offenheit der Architektur erleichtert die Integration
von Drittanbieter-Software und die Anpassung an geén-
derte Geschéftsanforderungen. Allerdings setzt die voll-
stindige Ausschopfung der Integrationsféhigkeit eine tie-
fergehende Priifung der Kompatibilitit und eine fehler-
freie Konfiguration der einzelnen Komponenten und
Schnittstellen voraus.

Time-to-Market (®): Die Architektur unterstiitzt eine
modulare Bauweise von Prozessen, was zu einer potenzi-
ellen Beschleunigung der Entwicklungszyklen beitragt.
Dies kann sich positiv auf die Time-to-Market auswirken
und somit zu einem schnelleren Rollout neuer Funktiona-
litaten und gednderten Anforderungen fiithren. Allerdings
héngt die Time-to-Market auch von Faktoren wie der ver-
wendeten Schnittstelle zwischen UiPath und Flowable so-
wie dem Reifegrad der Entwicklungs- und Deployment-
Prozesse ab, da diese ebenfalls eine signifikante Rolle
spielen.

Compliance und Governance (®): In ihrer grundlegen-
den Form bietet die Architektur keine expliziten Funktio-
nen zur Unterstiitzung von Compliance und Governance
wie Uberwachung oder Protokollierung. Sie ist jedoch in

Anwendungen und Konzepte der Wirtschaftsinformatik

der Gestaltung offen fiir die Integration solcher Mecha-
nismen. Die im Kontext zu Erstellung der Architektur ver-
wendeten Softwarelosungen UiPath und Flowable enthal-
ten bereits eingebaute Governance- und Compliance-
Funktionen, welche die Einhaltung betrieblicher Richtli-
nien und Standards unterstiitzen.

Administrierbarkeit (@): Die Architektur zeichnet sich
durch ihre klare Strukturierung und Modularitdt aus, was
die Administration erleichtert. Durch die Verwendung
von etablierten Tools wie UiPath und Flowable, die be-
reits iber umfassende Verwaltungsoberflachen verfiigen,
wird die Administrierbarkeit gestérkt. Dennoch héngt
eine effektive Administrierbarkeit von der Einrichtung
entsprechen der Management- und Monitoring-Tools
ab, die in der Lage sind, das System im operativen Betrieb
Zu unterstiitzen.

Sicherheit (®): Die Sicherheit ist ein kritischer Aspekt
der Architektur, welcher besondere Aufmerksamkeit er-
fordert. Durch die Verwendung modularer Komponenten
konnen SicherheitsmaBinahmen gezielt und spezifisch fiir
jeden Microservice implementiert werden. Dies fordert
eine Sicherheitsarchitektur, die sich an den individuellen
Sicherheitsanforderungen jeder Komponente orientiert.
Die aktuelle Architektur besitzt durch die verwendeten
Systeme bereits Sicherheitsmechanismen fiir Authentifi-
zierung, Autorisierung und Verschliisselung. Allerdings
besteht erhebliches Optimierungspotenzial, insbesondere
wenn man im RPA-Bereich Systeme verwendet, die um-
fassende Rollen- und Berechtigungskonzepte erfor-
dern. Es sollten zusétzliche MaBnahmen ergriffen wer-
den, um die Sicherheit weiter zu verbessern und sicher-
zustellen, dass keine tiberméfigen Rechte existieren, spe-
ziell bei der Automatisierung kritischer Systeme.

FAZIT

Der Artikel hat sich mit der Entwicklung einer Microser-
vice-Architektur im RPA-Umfeld beschiftigt, um Vor-
teile wie bessere Wiederverwendbarkeit, erhéhte Skalier-
barkeit, groflere Ersetzbarkeit und verbesserte Flexibili-
tit zu realisieren. Diese Aspekte tragen dazu bei, Ent-
wicklungs- und Wartungszeiten zu reduzieren und somit
die Agilitdt und Kosteneffizienz zu steigern.

Ein zentrales Ergebnis ist der Aufbau einer modularen
Architektur, die durch die Integration von RPA-
Microservices und ein Orchestrierungstool unterstiitzt
wird. Die Katalogisierung der Microservices sowie die
Unterscheidung zwischen wertgenerierenden und nicht-
wertgenerierenden Services fordern die Ubersicht und
Wiederverwendbarkeit.

Handlungsempfehlung

Um die langfristige Effizienz und Skalierbarkeit der Ar-
chitektur sicherzustellen, sollte diese regelmiflig evalu-
iert und an sich dndernde Anforderungen angepasst wer-
den. Logging- und Monitoring-Konzepte sind ebenfalls
weiterzuentwickeln, insbesondere wenn die Anzahl an
Microservices steigt. Ein weiterer Aspekt ist die konti-
nuierliche Uberpriifung der eingesetzten Microservices,
um unnétige Prozesse zu identifizieren und zusammen-
zufiihren. Workshops und Schulungen sollten regelma-

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 47

Big angeboten werden, um das Wissen iiber Microser-
vices im Unternehmen zu vertiefen. Die Optimierung der
Schnittstellen zwischen den einzelnen Schichten, mog-
licherweise durch den Einsatz eines API-Gateways, ist
ein zentraler Aspekt, um die Effizienz weiter zu steigern.

Ausblick

Die vorgestellte Architektur bildet die Grundlage fiir zu-
kiinftige Weiterentwicklungen. Durch die Einfiihrung
moderner Technologien wie kiinstlicher Intelligenz
konnten Ausfille proaktiv verhindert und Sicherheits-
mafBnahmen verbessert werden. Langfristig konnte die
Monetarisierung der entwickelten RPA-Microservices
als Umsatzquelle dienen und Unternehmen als Innovati-
onsfiihrer in der Branche positionieren.

Literaturverzeichnis

Aguirre, Santiago; Rodriguez, Alejandro (2017): Auto-
mation of a Business Process Using Robotic Process
Automation (RPA): A Case Study, S. 65-71. DOI:
10.1007/978-3-319-66963-2 7.

Alberth, Markus; Mattern, Michael (2017): Automation.
Understanding robotic process Automation (RPA).
In: JOURNAL - THE CAPCO INSTITUTE JOURNAL
OF FINANCIAL TRANSFORMATION (46). Online
verfiigbar unter https://www.capco.com/-/me-
dia/CapcoMedia/Capco-2023/Capco-Institute/Jour-
nal-46/JOURNAL46 5 Alberth.ashx.

Alpers, Sascha; Becker, Christoph; Oberweis, Andreas;
Schuster, Thomas (2015): Microservice Based Tool
Support for Business Process Modelling. In: 2015
1IEEE 19th International Enterprise Distributed Ob-
ject Computing Workshop, S. 71-78. DOI:
10.1109/EDOCW.2015.32

Al-Slais, Yaqoob; Ali, Mazen (2023): Robotic Process
Automation and Intelligent Automation Security
Challenges: A Review. In: 2023 International Con-
ference On Cyber Management And Engineering
(CyMaEn), S. 71-77. DOI: 10.1109/Cy-
MaEn57228.2023.10050996.

Asatiani, Aleksandre; Penttinen Esko (2016): TURNING
ROBOTIC PROCESS AUTOMATION INTO
COMMERCIAL SUCCESS - CASE
OPUSCAPITA. In: Journal of Information Technol-
ogy Teaching Cases (6(2)), S. 67-74.

AWS (0. D.): Was ist eine API? — Anwendungsprogram-
mierschnittstelle? Hg. v. Amazon Web Services, Inc.

Online verfligbar unter https://aws.ama-
zon.com/de/what-is/api/, zuletzt gepriift am
11.01.2024.

Anwendungen und Konzepte der Wirtschaftsinformatik

Axmann, Bernhard; Harmoko, Harmoko (2020): Robotic
Process Automation: An Overview and Comparison
to Other Technology in Industry 4.0. In: /0th Inter-
national Conference on Advanced Computer Infor-
mation Technologies (ACIT), S. 559-562. DOI:
10.1109/ACIT49673.2020.9208907.

Baskarada, Sasa; Nguyen, Vivian; Koronios, Andy
(2020): Architecting Microservices: Practical Oppor-
tunities and Challenges. In: Journal of Computer
Information Systems 60 (5), S. 428-436. DOI:
10.1080/08874417.2018.1520056.

Berruti, Federico; Nixon, Graeme; Taglioni, Giambat-
tista; Whiteman, Rob (2017): Intelligent process au-
tomation: The engine at the core of the next-genera-
tion operating model. In: McKinsey & Company,
2017. Online verfligbar unter https://www.mckin-
sey.com/capabilities/mckinsey-digital/our-in-
sights/intelligent-process-automation-the-engine-at-
the-core-of-the-next-generation-operating-model,
zuletzt gepriift am 11.01.2024.

Blinowski, Grzegorz; Ojdowska, Anna; Przybylek,
Adam (2022): Monolithic vs. Microservice Architec-
ture: A Performance and Scalability Evaluation. In:
IEEE Access 10, S. 20357-20374. DOI:
10.1109/ACCESS.2022.3152803.

Brettschneider, Jennifer (2020): Bewertung der
Einsatzpotenziale und Risiken von Robotic Process
Automation. In: HMD 57 (6), S. 1097-1110. DOI:
10.1365/s40702-020-00621-y.

Bygstad, Bendik (2017): Generative Innovation: A Com-
parison of Lightweight and Heavyweight IT. In: Jour-
nal of Information Technology 32 (2), S. 180-193.
DOI: 10.1057/it.2016.15.

Celonis (0. D.): Unser Unternehmen. Hg. v. Celonis.
Online verfiigbar unter https://www.celo-
nis.com/de/company/, zuletzt gepriift am 10.03.2024.

Choi, Daehyoun; R’bigui, Hind; Cho, Chiwoon (2021):
Candidate Digital Tasks Selection Methodology for
Automation with Robotic Process Automation. In:
Sustainability 13 (16), S. 8980. DOL:
10.3390/sul13168980.

Choi, Daehyoun; R'bigui, Hind; Cho, Chiwoon (2022):
Enabling the Gab Between RPA and Process Mining:
User Interface Interactions Recorder. In: IEEE Access
10, S. 39604-39612. DOI:
10.1109/ACCESS.2022.3165797.

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 48

Da Costa, Diogo Antdnio Silva; Mamede, Henrique Sao;
Da Mira Silva, Miguel (2022): Robotic Process Au-
tomation (RPA) Adoption: A Systematic Literature
Review. In: Engineering Management in Production
and Services 14 (2), S. 1-12. DOI: 10.2478/emj-
2022-0012.

Dey, Sourav; Das, Arindam (2019): Robotic process au-
tomation: assessment of the technology for transfor-
mation of business processes. In: I/JBPIM 9 (3),
Artikel 100927, S. 220-230. DOLI:
10.1504/1JBPIM.2019.100927.

Doguc, Ozge (2020): Robot Process Automation (RPA)
and Its Future. In: Umit Hacioglu (Hg.): Handbook of
research on strategic fit and design in business eco-
systems. Hershey, PA, USA: IGI Global Business
Science Reference (Advances in E-Business Re-
search (AEBR) book series), S. 469—-492. Online ver-
fiigbhar unter https://www.researchgate.net/pro-
file/Ozge-Doguc-2/publication/338302068 Ro-
bot_Process Automa-
tion RPA and Its Future/links/5f5772£592851¢250
b9d23ad/Robot-Process-Automation-RPA-and-Its-
Future.pdf, zuletzt gepriift am 10.12.2023.

Dowalil, Herbert (2018): Grundlagen des modularen
Softwareentwurfs. Der Bau langlebiger Mikro- und
Makro-Architekturen wie Microservices und SOA
2.0. Miinchen: Hanser.

Drawehn, Jens; Krause, Tobias; Renner, Thomas; Kintz,
Maximilien (2022): Robotic Process Automation in
Versicherungsunternehmen. Erfahrungen und Best
Practices beim Einsatz von RPA: Fraunhofer-Gesell-
schaft. Online verfiigbar unter https://www.digi-
tal.iao.fraunhofer.de/content/dam/iao/ikt/de/docu-
ments/RPA in_Versicherungsunternehmen.pdf, zu-
letzt gepriift am 13.12.2023.

Eyerman, Stijn; Hur, Ibrahim (2022): Efficient Asyn-
chronous RPC Calls for Microservices: Death-
StarBench Study. DOI: 10.48550/arXiv.2209.13265.

Farley, David (0. D.): Modernes Software Engineering -
Bessere Software schneller und effektiver entwickeln
by David Farley. Hg. v. O’Reilly. Online verfligbar
unter https://www.oreilly.com/library/view/mo-
dernes-software-engineer-
ing/9783747506363/Text/k10.html, zuletzt gepriift
am 20.01.2024.

Fowler, Martin (2020): Domain Driven Design. Hg. v.
martinFowler.com. Online verfiigbar unter
https://martinfowler.com/bliki/DomainDrivenDe-
sign.html, zuletzt gepriift am 15.04.2024.

Anwendungen und Konzepte der Wirtschaftsinformatik

Fowler, Martin; Lewis, James (2014): Microservices. a
definition of this new architectural term. Hg. v. mar-
tinFowler.com. Online verfiigbar unter https://martin-
fowler.com/articles/micro-
services.html?source=post page, zuletzt aktualisiert
am 25.03.2014, zuletzt gepriift am 16.11.2023.

Gartner (0. D.a): Definition of Architecture - Gartner In-
formation Technology Glossary. Hg. v. Gartner.
Online verfligbar unter https://www.gart-
ner.com/en/information-technology/glossary/archi-
tec-
ture#:~:text=IT%?20architecture%20is%20a%?20serie
$%2001%20principles%2C%?20guidelines,communi-
cations%2C%?20development%20methodolo-
gies%2C%20modeling%20tools%20and%20organi-
zational%?20structures., zuletzt gepriift am
19.01.2024.

Gartner (0. D.b): Definition of Robotic Process Automa-
tion. Hg. v. Gartner. Online verfiigbar unter
https://www.gartner.com/en/information-technol-
ogy/glossary/robotic-process-automation-software,
zuletzt aktualisiert am 11.12.2023, zuletzt gepriift am
11.12.2023.

GitLab (2022): What are the benefits of a microservices
architecture? Hg. v. GitLab. Online verfiigbar unter
https://about.gitlab.com/blog/2022/09/29/what-are-
he-benefits-of-a-microservices-architecture/, zu- letzt
aktualisiert am 29.09.2022, zuletzt gepriift am
23.01.2024.

Habibullah, Safa; Liu, Xiaodong; Tan, Zhiyuan; Zhang,
Yonghong; Liu, Qi (2019): Reviving Legacy Enter-
prise Systems with Micro service-Based Architecture
with in Cloud Environments. In: 8th International
Conference on Soft Computing, Artificial Intelligence
and Applications 9, S. 173-186. DOI:
10.5121/csit.2019.90713.

Hanussek, Marc (2019): RPA meets KI oder: wie intelli-
gente Softwareroboter Thre Prozesse automatisieren.
Hg. v. Fraunhofer IAO - BLOG. Online verfligbar un-
ter https://blog.iao.fraunhofer.de/rpa-meets-ki-oder-
wie-intelligente-softwareroboter-ihre-prozesse-au-
tomatisieren/, zuletzt aktualisiert am 06.07.2021, zu-
letzt gepriift am 28.12.2023.

Hu, Chenglie (2023): An Introduction to Software De-
sign. Concepts, Principles, Methodologies, and Tech-
niques. Ist ed. 2023. Cham: Springer International
Publishing; Imprint Springer. Online verfiigbar unter
https://link.springer.com/book/10.1007/978-3-031-
28311-6.

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 49

IEEE Computer Society/Software & Systems Engineer-
ing Standards (2022): IEEE/ISO/IEC International
Standard for Software, systems and enterprise--Ar-
chitecture description. DOI:
10.1109/IEEESTD.2022.9938446.

Indrasiri, Kasun; Siriwardena, Prabath (2018): Micro-
services for the Enterprise. Designing, Developing,
and Deploying. Ist ed. 2018. New York: Apress
(Springer eBook Collection). Online verfiigbar unter
https://link.springer.com/content/pdf/10.1007/978-
1-4842-3858-5.pdf.

Institute for Robotic Process Automation & Artificial In-
telligence (0. D.): What is Robotic Process Automa-
tion? | IRPAAIL Hg. v. IRPA Al. Online verfiigbar
unter https://irpaai.com/what-is-robotic-process-au-
tomation/, zuletzt aktualisiert am 11.12.2023, zuletzt
gepriift am 11.12.2023.

Ivanci¢, Lucija; Susa Vugec, Dalia; Bosilj Vuksi¢, Vesna
(2019): Robotic Process Automation: Systematic Lit-
erature Review 361, S. 280-295. DOI: 10.1007/978-
3-030-30429-4 19.

Jamshidi, Pooyan; Pahl, Claus; Mendonca, Nabor C.;
Lewis, James; Tilkov, Stefan (2018): Microservices:
The Journey So Far and Challenges Ahead. In: IEEE
Softw. 35 3), S. 24-35. DOI:
10.1109/MS.2018.2141039.

Kalske, Miika; Mikitalo, Niko; Mikkonen, Tommi
(2018): Challenges When Moving from Monolith to
Microservice Architecture. In: Irene Garrigds und
Manuel Wimmer (Hg.): Current Trends in Web Engi-
neering. ICWE 2017 International Workshops, Lig-
uid Multi-Device Software and EnWoT, practi-O-
web, NLPIT, SoWeMine ; Rome, Italy, June 5-8,
2017 ; revised selected papers, Bd. 10544. Cham:
Springer International Publishing (Lecture Notes in
Computer Science, 10544), S. 32-47. Online ver-
fligbar unter https://link.springer.com/chap-
ter/10.1007/978-3-319-74433-9 3.

Karnowski, Veronika (2013): Diffusionstheorie. In:
Wolfgang Schweiger und Andreas Fahr (Hg.): Hand-
buch Medienwirkungsforschung. Wiesbaden:
Springer VS, S. 513-528. Online verfiigbar unter
https://link.springer.com/chapter/10.1007/978-3-
531-18967-3 27.

Khan, Ovais; Siddiqui, Nabil; Oleson, Timothy; Fussell,
Mark (2021): Embracing Microservices Design. A
practical guide to revealing anti-patterns and architec-
tural pitfalls to avoid microservices fallacies. 1% edi-
tion. Erscheinungsort nicht ermittelbar, Boston, MA:
Packt Publishing; Safari.

Anwendungen und Konzepte der Wirtschaftsinformatik

Kirchmer, Mathias (2017): Robotic Process Automation
- Pragmatic Solution or Dangerous Illusion? In:
BTOES Insights (Business Transformation and Oper-
ational Excellence Summit Insights). Online ver-
fligbar unter https://www.researchgate.net/publica-
tion/317730848 Robotic Process Automation -
_Pragmatic_Solution_or Dangerous Illusion, zu-
letzt gepriift am 04.01.2024.

Koch, Oliver; Wildner, Stephan (2020): Intelligent Ro-
botic Process Automation. Konzeption eines Ord-
nungsrahmens zur Nutzung kiinstlicher Intelligenz
fiir die Prozessautomatisierung. In: Riidiger Buchkre-
mer, Thomas Heupel und Oliver Koch (Hg.): Kiin-
stliche Intelligenz in Wirtschaft & Gesellschaft. Aus-
wirkungen, Herausforderungen & Handlungsempfeh-
lungen. Wiesbaden, Heidelberg: Springer Gabler
(FOM-Edition), S. 211-230. Online verfiigbar unter
https://link.springer.com/book/10.1007/978-3-658-
29550-9, zuletzt gepriift am 04.01.2024.

Kohler-Schute, Christiana (2020): Robotic Process Au-
tomation in Unternehmen. Praxisorientierte
Methoden und Vorgehensweisen zur Umsetzung von
RPA-Initiativen. Berlin: KS-Energy-Verlag.

Kokina, Julia; Blanchette, Shay (2019): Early evidence
of digital labor in accounting: Innovation with Ro-
botic Process Automation. In: International Journal
of Accounting Information Systems 35, S. 100431.
DOI: 10.1016/j.accinf.2019.100431.

Kroll, Christian; Bujak, Adam; Darius, Volker; Enders,
Wolfgang; Esser, Marcus (2016): Robotic Process
Automation - Robots conquer business processes in
back offices. A 2016 study conducted by Capgemini
Consulting and Capgemini Business Services. Hg. v.
Capgemini. Online verfligbar unter
https://www.capgemini.com/consulting-de/wp-con-
tent/uploads/sites/32/2017/08/robotic-process-auto-
mation-study.pdf, zuletzt gepriift am 04.01.2023.

Lal Sahni, Dhanik (2023): What is Microservice Archi-
tecture? Hg. v. Salesforcecodex. Online verfiigbar un-
ter https://stories.salesforceco-
dex.com/2023/05/salesforce/what-is-microservice-
architecture/, zuletzt aktualisiert am 17.05.2023, zu-
letzt gepriift am 19.11.2023.

Langmann, Christian; Turi, Daniel (2021): Robotic Pro-
cess Automation (RPA) - Digitalisierung und Autom-
atisierung von Prozessen. Voraussetzungen, Funk-
tionsweise und Implementierung am Beispiel des
Controllings und Rechnungswesens. 2. Auflage.
Wiesbaden, Heidelberg: Springer Gabler.

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 50

Lhuer, Xavier (2016): The next acronym you need to
know about: RPA (robotic process automation. Hg. v.
McKinsey. Online verfiigbar unter
https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/the-next-acronym-you-need-to-
know-about-rpa, zuletzt gepriift am 13.05.2024.

Madakam, Somayya; Holmukhe, Rajesh M.; Kumar
Jaiswal, Durgesh (2019): The Future Digital Work
Force: Robotic Process Automation (RPA). In:
JISTEM 16, S. 1-17. DOI: 10.4301/S1807-
1775201916001.

Manning, Louise (2020): Moving from a compliance-
based to an integrity-based organizational climate in
the food supply chain. In: Comprehensive reviews in
food science and food safety 19 (3). DOL:
10.1111/1541-4337.12548.

Microsoft Learn (o. D.): Microservice-Architekturstil.
Hg. v. Microsoft Learn. Online verfiigbar unter
https://learn.microsoft.com/de-de/azure/architec-
ture/guide/architecture-styles/microservices, zuletzt
aktualisiert am 19.11.2023, zuletzt gepriift am
19.11.2023.

Microsoft Learn (2023): Entwerfen einer an Micro-
service orientierten Anwendung. Hg. v. Microsoft
Learn. Online verfiigbar unter https://learn.mi-
crosoft.com/de-de/dotnet/architecture/micro-
services/multi-container-microservice-net-applica-
tions/microservice-application-design, zuletzt aktu-
alisiert am 10.05.2023, zuletzt gepriift am
19.11.2023.

Moffitt, Kevin C.; Rozario, Andrea M.; Vasarhelyi, Mi-
klos A. (2018): Robotic Process Automation for Au-
diting. In: Journal of Emerging Technologies in Ac-
counting 15 (1), S. 1-10. DOI: 10.2308/jeta-10589.

Montemagno, James; Warren, Genevieve; Jain, Tarun;
Coulter, David; Veloso, Miguel et al. (2022): Com-
munication in a microservice architecture. Hg. v. Mi-
crosoft Learn. Online verfiigbar unter
https://learn.microsoft.com/en-us/dotnet/architec-
ture/microservices/architect-microservice-contai-ne-
rapplications/communication-in-microservicearchi-
tecture, zuletzt aktualisiert am 21.01.2024, zuletzt
gepriift am 21.01.2024.

Nadareishvili, Irakli; Mitra, Ronnie; McLarty, Matt;
Amundsen, Michael (2016): Microservice architec-
ture. Aligning principles, practices, and culture. First
Edition, Second Release. Beijing, Boston, Farnham,
Sebastopol, Tokyo: O Reilly.

Newman, Sam (2020): Vom Monolithen zu Micro-

services. Patterns, um bestehende Systeme Schritt fiir
Schritt umzugestalten. Heidelberg: OReilly.

Anwendungen und Konzepte der Wirtschaftsinformatik

Newman, Sam (2021): Building microservices. Design-
ing fine-grained systems. Second edition. Beijing,
Boston, Farnham, Sebastopol, Tokyo: O'Reilly Me-
dia.

Niedermaier, Sina; Koetter, Falko; Freymann, Andreas;
Wagner, Stefan (2019): On Observability and Moni-
toring of Distributed Systems — An Industry Interview
Study. In: Sami Yangui, Ismael Bouassida Rodri-
guez, Khalil Drira, Zahir Tari und Pagination Cover
(Hg.): Service-Oriented Computing. 17th Interna-
tional Conference, ICSOC 2019, Toulouse, France,
October 28-31, 2019, Proceedings, Bd. 11895. 1st ed.
2019. Cham: Springer (Springer eBooks Computer
Science, 11895), S. 36-52. Online verfiigbar unter
https://link.springer.com/chap- ter/10.1007/978-3-
030-33702-5 3.

Pricha, Petr; Skrbek, Jan (2022): API as Method for Im-
proving Robotic Process Automation. In: Andrea
Marrella, Raimundas Matulevi¢ius, Renata Gab-
ryelczyk, Bernhard Axmann, Vesna Bosilj Vuksic,
Walid Gaaloul et al. (Hg.): Business Process Manage-
ment: Blockchain, Robotic Process Automation, and
Central and Eastern Europe Forum. BPM 2022
Blockchain, RPA, and CEE Forum, Miinster, Ger-
many, September 11-16, 2022, Proceedings. 1st ed.
2022. Cham: Springer International Publishing; Im-
print Springer (Lecture Notes in Business Infor-
mation Processing, 459). Online verfiigbar unter
https://link.springer.com/chapter/10.1007/978-3-
031-16168-1 17.

PWC South Africa (0. D.): Robotic process automation.
Hg. v. PWC South Africa. Online verfligbar unter
https://www.pwc.co.za/en/services/consulting/ro-
botic-process-automation.html, zuletzt gepriift am
11.12.2023.

RedHat (2019): Wie funktioniert ein API-Gateway? Hg.
v. RedHat. Online verfligbar unter
https://www.redhat.com/de/topics/api/what-does-an-
api-gateway-do, zuletzt gepriift am 07.12.2023.

Santos, Filipa; Pereira, Ruben; Vasconcelos, José Braga
(2020): Toward robotic process automation imple-
mentation: an end-to-end perspective. In: BPMJ 26
(2), S. 405-420. DOI: 10.1108/bpm;j-12-2018-0380.

SAP (0. D.): Was ist Prozessautomatisierung? Hg. v.
SAP. Online verfligbar unter
https://www.sap.com/germany/products/technology-
platform/process-automation/what-is-process-auto-
mation.html, zuletzt gepriift am 10.12.2023.

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 51

Shidaganti, Ganeshayya; Salil, Sreya; Anand, Prarthana;
Jadhav, Vaishnavi (2021): Robotic Process Automa-
tion with Al and OCR to Improve Business Process:
Review. In: 2021 Second International Conference
on Electronics and Sustainable Communication Sys-
tems (ICESC), S. 1612-1618. DOLI:
10.1109/ICESC51422.2021.9532902.

Singleton, Andy (2016): The Economics of Micro-
services. In: IEEE Cloud Comput. 3 (5), S. 16-20.
DOI: 10.1109/MCC.2016.109.

Syed, Rehan; Suriadi, Suriadi; Adams, Michael; Ban-
dara, Wasana; Leemans, Sander J.J.; Ouyang, Chun
et al. (2020): Robotic Process Automation: Contem-
porary themes and challenges. In: Computers in In-
dustry 115, S. 103162. DOI:. 10.1016/j.com-
pind.2019.103162.

Taibi, Davide; Lenarduzzi, Valentina; Pahl, Claus
(2017): Processes, Motivations, and Issues for Mi-
grating to Microservices Architectures: An Empirical
Investigation. In: [EEE Cloud Comput. 4 (5), S. 22—
32.DOI: 10.1109/MCC.2017.4250931.

UiPath (0. D.): KI und RPA — die nichste Stufe der Au-
tomatisierung | UiPath. Hg. v. UiPath. Online ver-
fligbar unter https://www.uipath.com/de/automa-
tion/ai-and-rpa, zuletzt gepriift am 28.12.2023.

van der Aalst, Wil M. P.; Bichler, Martin; Heinzl, Armin
(2018): Robotic Process Automation. In: Bus Inf Syst
Eng 60 (4), S. 269-272. DOI: 10.1007/s12599-018-
0542-4.

Vitharanage, Imesha; Thibbotuwawa, Amila (2021): En-
terprise Robotic Process Automation. In: BPRM 01
(01), S. 10-12. DOI: 10.31705/BPRM.2021.2.

Wanner, Jonas; Hofmann, Adrian; Fischer, Marcus;
Janiesch, Christian; Imgrund, Florian; Geyer-
Klingebert, Jerome (2019): Process Selection in RPA
Projects — Towards a Quantifiable Method of Deci-
sion Making. In: Fortieth International Conference
on Information Systems. Online verfligbar unter
https://opus.bibliothek.uni-augsburg.de/opus4/front-
door/deliver/index/docld/95923/file/95923.pdf, zu-
letzt gepriift am 06.01.2024.

Willcocks, Leslie; Lacity, Mary; Craig, Andrew (2015):
The IT Function and Robotic Process Automation. In:
London School of Economics and Political Science.
Online verfligbar unter
https://eprints.lse.ac.uk/64519/1/OUWRPS 15 05 p
ublished.pdf, zuletzt gepriift am 10.12.2023.

Wolff, Eberhard (2018): Microservices. Grundlagen fle-
xibler Softwarearchitekturen. 2., aktualisierte Auf-

lage. Heidelberg: dpunkt.verlag.

Anwendungen und Konzepte der Wirtschaftsinformatik

Yousif, Mazin (2016): Microservices. In: /IEEE Cloud
Comput. 3 (%), S. 4-5. DOI:
10.1109/MCC.2016.101.

Zhang, Chanyuan; Thomas, Chanta; Vasarhelyi, Miklos
A. (2021): Attended Process Automation in Audit: A
Framework and A Demonstration. In: Journal of In-
formation Systems 36 (2). DOI: 10.2308/ISYS-
2020-073.

(ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 21 (2025) Seite 52

