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ABSTRACT

Forecast-based energy management can play a large
role in a smarter and more efficient use of renewable
energies based on demand side management. Using
approaches such as model predictive control, individ-
ual consumption devices can be shifted within opera-
tion constraints so that their electricity consumption
optimally matches generation. In agriculture, large
thermal storages make up a sizeable part of electricity
consumption, and offer a potential use in the short term
shifting of demand. Necessary for this are accurate
models to forecast behaviour of such dynamic systems,
so that minimal power demand and fulfilment of oper-
ation constraints can be ensured when computing opti-
mal controls. This work focuses on the physics-based
modelling of a milk cooling storage through parameter
identification on real measurement data. Emphasized
are the derivation of a suitable model ODE with re-
gards to available data, and evaluation of the model on
a rolling horizon. All major features of the measure-
ment data can be recreated by the model forecasts, and
model performance values show errors of around 30%
relative to mean temperature. Model performance is
considered suitable for use in energy management at
least on short forecast horizons, while practicability
on longer horizons is subject to further research.

INTRODUCTION

One of the main difficulties in the large scale integra-
tion of renewable energy sources like solar and wind
plants is their varying and uncontrollable generation,
dependent on the weather. Sufficient storage solu-
tions are very expensive, and at least currently and in
the near future not available on a large enough scale
(Pickard et al., 2009). This leads to situations of either
over- or underproduction of renewable energies, which
on the grid level causes a need for (usually carbon-
based) buffer generation, and in some situations also
the temporary shut down of plants. Analogue situa-
tions also affect individuals generating their own en-
ergy, who face expensive import or unprofitable export

of energy when self-consumption is not possible. One
strategy to mitigate this problem is demand side man-
agement (DSM), which comprises strategies of influ-
encing the energy consumption side of the situation, in
order to have overall energy demand match the avail-
able generation as closely as possible at all times. On
the scale of an individual household or enterprise, this
can be achieved through an energy management sys-
tem (EMS). Economic incentives making this worth-
while for individual households can derive from the
difference between electricity price and feed-in tariff
when producing own renewable energy, or from vari-
able electricity pricing schemes, which are becoming
an option with increasing relevance in Germany. Intel-
ligent EMS approaches (sometimes also smart EMS)
can include the forecast-based consideration and con-
trol over individual devices and storages. Where possi-
ble under operation constraints, device start times can
be shifted to optimal times, continuous control values
adapted or the operation of storage systems optimized,
often in a model predictive control (MPC) scheme. Es-
pecially the autonomous and optimized management
of larger consumers has gained increasing interest in
research, including investigation of mathematical so-
lution strategies for the ensuing problems in the fields
of optimization, control and modelling. Burda et al.
(2023) published approaches for the optimized con-
trol of thermal and electrical building energy supply
with a Mixed-Integer Non-linear MPC. An agricultural
setting stood in the centre of research projects Smart-
Farm and SmartFarm2, where a focus was put on the
development of lightweight optimization algorithms
for data-based modelling, scheduling and optimal con-
trol in a forecast-based EMS (Lachmann et al., 2020).

This work examines the modelling of thermal stor-
ages, needed for their use in an intelligent, forecast-
based EMS. Application example is a milk cooling sys-
tem, this being a large consumer of electricity on dairy
farms. In order to fulfil operational constraints, the
temperature behaviour of such a thermal storage needs
to be forecast based on the applied controls. Lachmann
and Büskens (2021) presented the use of data-based
modelling for this and other storage devices, empha-
sizing the need for a sufficient basis of data when
using purely data-based model approaches. Afram
et al. (2014) reported good model performance for
data-based, first order linear models for thermal stor-
age tank data developed for a similar use case. Other
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publications on the modelling of thermal storages in
this context often base their models on consideration
of the relevant physical processes, e.g. for a combined
heat and power unit and heat storage tank (Bitner et al.,
2021), or for a residential system including heat pump
and thermal storage system Schütz et al. (2015). Such
models can usually simulate the considered system
well, but their application to specific real systems is
dependent on expert knowledge, and usually not trans-
ferable. This work aims to bridge this gap between
the purely data-based modelling of devices based on
real-world measurements and the physical modelling
of such systems in the context of energy management
by employing widely used methods of parameter iden-
tification (PI) a for parametrized physical model of the
dynamic system. Using the milk cooling system as an
application example, approaches outlined in previous
work (Kappertz and Büskens, 2023) are investigated
and tested for real data. A complete workflow from the
derivation of a phyics-based dynamic model, the fitting
of its parameters in a PI problem and the evaluation
of this model is presented. An emphasis lies on the
difficulties of modelling and parameter identification
with limited real-life data, and an evaluation of model
performance through a simulation scheme motivated
by the designated application in a forecast-based EMS.

THEORY AND METHODS

Parameter Identification of Dynamical Systems

This work focusses on the modelling of dynamical sys-
tems, whose behaviour is assumed to be representable
through an ordinary differential equation (ODE) for
the state derivative ẋ(t) = f(x(t), u(t), t, p) as a func-
tion of current state of the system x(t) ∈ Rnx , any
applied controls (external influences) u(t) ∈ Rnu , and
a set of parameters p ∈ Rnp describing the specific
properties of the modelled system. An explicit time
dependency may be accounted for in this ODE, but is
not considered in the following.

Any future state of the system at time t > t0 can
then be computed through integration of the ODE from
x(t0) for given controls u(τ), t0 ≤ τ ≤ t, as

x(t) =

∫ t

t0

f(x(τ), u(τ), p)dτ.

In order to do this, a reasonably accurate esti-
mate of the ’true’ parameters is needed, which is
achieved by PI on measured data. Measured data
{ti, ūi, x̄i | i = 0, 1, ..., nt − 1} contain control and
state values measured at nt time points. These are
used to identify the optimal parameters p∗ that mini-
mize the error between measured and predicted state
values in a (direct) PI problem of the general form

p∗ = arg min
p∈Rnp

nt−1∑
i=0

nx−1∑
j=0

(x̄i,j − xj(ti))2

s.t. ẋ(t) = f(x(t), û(t), p), t0 ≤ t ≤ tnt−1,

where for the error measure usually the quadratic norm
is used, based on an assumed normal distribution of
measurement errors. The dynamic model and the nec-
essary integration can make this a non-linear and nu-
merically intensive problem, for which different nu-
merical solution schemes exist (Schittkowski, 2002).
In the following, the approach of full discretization is
used, in which the numerical integration of the ODE
is included in the optimization problem as additional
equality constraints at a specified number of discretiza-
tion points (Schäfer et al., 2018). While this approach
increases the overall dimension of the optimization
problem, it eliminates the need for costly iterative in-
tegration steps. The model ODE not having to be
fulfilled at all intermediate steps can also make it pos-
sible to avoid local minima in search of a better local or
even global minimum (Wiesner and Büskens, 2023).

Milk Cooling System

A milk cooling system is a large agricultural thermal
storage used on dairy farms to cool and store milk
at conditions constrained by sanitary regulations. Its
relevance for energy management stems from its large
electricity consumption, and the fact that a margin in
the temperature constraints allows shifting of this con-
sumption in time. Generally, milk cooling systems
have an internal on-off controller set to cool the fresh
milk to around 5◦C until it is emptied. In this work,
real measurement data previously discussed by Lach-
mann and Büskens (2021) are used, gathered on a dairy
farm in Northern Germany. The milk cooling system
is operated such that new milk is input twice per day
(around 3500 and 2000 l), and emptied every two days.
The data contain measurements of the temperature
within the tank, as well as the electrical power used for
cooling the milk, both available in minutely resolution.
In the following, eight days of data from February and
April are used. As visible in the measured power data
(Fig. 2), the cooling aggregate kicks in twice per day
when warmer fresh milk is entered, then averaging at
11.9 kWh. An average daily consumption of 55 kWh
is observed. The different phases of operation have
clear influences on the temperature data, where the
small, twice daily peaks of simultaneous milk inflow
and cooling are alternated with long periods of no ac-
tivity, during which ambient warming of the system
seems small enough to not warrant additional cooling.
Every two days, the cleaning period after the tank is
emptied expresses itself in temperature peaks of more
than 50◦C, followed by a cooling-down period until
the next milking in the morning.

Not all of these processes are covered satisfacto-
rily in the available data. With the two measurements
available, many aspects of the state behaviour, i.e. tem-
perature, are not linked to control input, i.e. cooling
power. Important external influences onto the system,
like the cleaning process, or the adding of milk, are not
available as control data. Following (Lachmann and
Büskens, 2021) they are therefore substituted by ’auxil-
iary’ controls derived in a preprocessing step from the
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available data. Since the influence of these processes
onto the temperature measurement is straightforward,
simple conditions on the available data allow for the
generation of additional boolean variables marking
e.g. the external influence of milk inflow (defined by
a rise in temperature when cooling power is active).
Similarly, the filling level of the tank can be estimated
based on the number of milking processes since last
pickup. In this work, every process phase (like clean-
ing or milk inflow) is only marked by a single value
at the beginning of the process. This assumption of
instantaneous processes is made to keep preprocessing
and model formulations simple. Overall, four substi-
tute variables are generated, resulting in an augmented
dataset of one state and five control measurements.

For external control by an intelligent EMS, a tem-
perature margin for safe operation of the milk cooling
system of 1◦C is assumed as a conservative estimate of
what food safety permits. Based on a superficial phys-
ical consideration of the system, the 1◦C temperature
margin for a tank filled for example with a volume of
V = 9000 l milk corresponds to a margin of approxi-
mately ∆Q = c ·V ·ρ ·∆T ≈ 10 kWh in terms of heat
energy Q, where c is the specific heat content of milk
and ρ its density. The amount of electrical energy that
could on short timescales be shifted to more optimal
times depends on the coefficient of performance (COP)
of the cooling aggregate used, defined as the fraction
of heat removed per applied amount of energy. Gener-
ally, COP values can vary between up to 4 down to 1
(Mhundwa et al., 2017), which leaves a potential for
short term load-shifting in the order of 2.5 to 10 kWh.

In order to intelligently shift the electrical consump-
tion of the milk cooling system, its behaviour needs
to be predictable, to comply with the temperature con-
straints, and to assess future power demand accurately,
as not to waste energy on over-cooling. A physical de-
scription of the relevant processes, and thus a basis for
a model ODE can be derived from considering energy
conservation of the relevant heat flows at time t as

Q̇m(t) + Q̇a(t) + Q̇w(t)− Q̇c(t) = Q̇internal(t), (1)

where Q̇m denotes the heat inflow when fresh milk is
added, Q̇a the heat exchange with the environment, Q̇w
the heat inflow of the hot water during the cleaning
phase, and Q̇c the outflow of heat achieved by the
cooling aggregate. Any accumulated heat flow affects
the state of the system, and is ’stored’ in form of a
change in its internal heat content as

Q̇internal(t) = C(t) · Ṫ (t) + T (t) · Ċ(t),

dependent on system heat capacity C and temperature
T . Eq. 1 can then be reformulated to yield an ODE for
the temperature of the system as

Ṫ (t) =
Q̇m(t) + Q̇a(t) + Q̇w(t)− Q̇c(t)− T (t) · Ċ(t)

C(t)
.

(2)
The individual terms of this ODE are approximated

to provide a model function to predict temperature

behaviour based on the available augmented dataset.
Time-dependent physical properties are thus approxi-
mated through time series data, but since the further
use of the model function only involves numerical op-
erations in a discretized setting, this is not an issue.
Heat capacity of the system is approximated as

C(t) ≈ Ct + cm · im(t) · Vm · ρm,

consisting of a constant term Ct for the heat capacity
of the tank itself and a second term, varying with the
amount of milk in the tank. Since no data on milk
level or in- and outflow is available, this is expressed in
terms of a ’counter’ variable im(t), defining how many
milking processes (i.e. from zero to four) have taken
place since last emptying. For each milking process,
a constant volume of added milk Vm is assumed, with
constant material properties for specific heat content
of milk cm and milk density ρm. The heat flow from
adding or removing milk is approximated as

Q̇m(t) ≈ (bo(t) · T (t) + bi(t) · Tm) · Ċ(t)/∆tm,

relying on boolean variables bo(t) and bi(t) to mark
times of milk out- and inflow, as well as assumptions
of constant values for (fresh) milk temperature Tm and
milking duration ∆tm, and the implicit assumption of
perfect mixing. Again the above assumption of the
varying milk content being the only time-dependent
component of the overall systems heat capacity is used.
Ambient heat exchange with the environment is ap-
proximated using Newton’s law of cooling as

Q̇a(t) ≈ (hc + bd(t) ·∆hd) ·A · (Ta − T (t)).

Another boolean variable bd(t) is used to describe
times where the tank door is open, leading to an in-
crease in heat exchange coefficient h, whose values
in the two situations themselves are assumed to be
constant. Also assumed constant is the tank surface
area A, and – less likely to match reality – ambient
temperature Ta. A more realistic approach including
either explicit or implicit time dependency is neglected
in favour of a simpler model function. Also the heat
inflow from hot cleaning water is approximated only
in a simple manner as Q̇w(t) ≈ Qw

∆tw
· bw(t) by using

binary variable bw(t), describing times of active cool-
ing, together with an assumedly constant amount of
heat energy Qw of said water delivered within clean-
ing duration ∆tw, also assumed constant. Finally, as
described above, the heat extracted by cooling is ap-
proximated as Q̇c(t) ≈ COP ·Pc(t), where, analogous
to the assumption of constant external temperature, a
constant COP is assumed. Using all approximations
listed above in Eq. 2, a parametrized model ODE can
now be based on the physical relationships as

ẋ0(t) =
1

p3 + u4(t)
·
(
p4 · u2(t)− p5 · u0(t)

+ p1 · u3(t) · (p0 − x0(t))

+ (p2 − x0(t)) · u1(t)
)
,
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Figure 1: Overview of the Rolling Horizon Scheme for Model Evaluation

where the state x0(t) of the system is the temperature,
and the controls of the system are the inputs of

u0(t) = Pc(t), u1(t) = bi(t)/∆tm, u2(t) = bw(t),

u3(t) = bd(t), u4(t) = im(t).

All physical constants (or variables assumed constant)
are covered by six parameters, formulated so that struc-
tural identifiability is possible, i.e. such that there are
not multiple combinations of parameters leading to
the same result. For a complete overview of physical
equivalents to each parameter, see Tab. 1.

Methodology

The augmented dataset is used to both fit and validate
the presented physics-based model. Since the milk
cooling system runs on a periodic cycle of two days,
no large variance of behaviour is expected over longer
durations. Therefore, only four days of measurement
data are used for model training in the parameter iden-
tification step, and an equal length dataset is reserved
for test purposes. In accordance to the designated use
in an EMS, the training set is the data right up to the
test set. In application, this should enable the model to
account also for slowly varying external influences.

To solve the PI problem, initial parameter guesses
are provided based on estimates of the physical prop-
erties they are based on (Tab. 1). Arbitrary initial
guesses are possible – and would be more practical
for real-life application of the forecast-based EMS ap-
proach – but can lead to longer computation times and
higher risk of getting stuck in local minima. The PI
problem is solved using the full discretization scheme
implemented in the Topas Model Fitting tool (Wiesner
et al., 2021). It transposes the problem into a high-
dimensional, but sparse non-linear program (NLP),
which the local solver WORHP solves with a Penalty-
Interior-Point algorithm (Büskens and Wassel, 2013).

To use and evaluate the model, simple Euler inte-
gration is deemed accurate enough, since the model

ODE is linear in its single state. Model evaluation is
performed by comparing model forecast and measured
data for the test set, but because of the dynamical na-
ture of the model, and mirroring its intended online
application in an EMS, this is performed on a rolling
horizon. The model is intended for short term fore-
casts, and evaluation over the longer test set is carried
out by iterative forecasting, as shown in Fig. 1. Given
a fixed forecast horizon ∆tfh and a resolution of the
rolling horizon of ∆tRH, the test set of length ∆tt is
split into nRH = (∆tt − ∆tfh)/∆tRH windows. For
each, a forecast is generated by iterative integration
of the model ODE using initial value and control val-
ues from measurements over the full forecast horizon.
Predicted and measured state values are compared by
computing mean average percentage error MAPE, and
normalized root mean squared error NRMSE (normal-
ized by mean measured value of the respective period)
for the window. An additional error measure more
specific to the use case in an EMS is computed as the
mean average error of all those durations of interest
for demand shifting, denoted as MAEEMS. The du-
rations relevant for energy management are those of
normal operation outside of the cleaning and empty
phases, and are here approximated as all times where
T ≤ 10.0◦C. Repeating the procedure with the next
window from time ti+1 = ti + ∆tRH, the whole test
set is covered, and all nRH performance measures can
be averaged into an aggregate performance measure.

For energy management, forecast horizons of 24 h
are of interest, since relevant cycles in consumption
and (solar) generation usually occur daily. Neverthe-
less, a running EMS would frequently re-evaluate the
situation and therefore only the first time steps of gen-
erated control output would actually be applied before
calculating new ones. Therefore model performance
of the first few minutes and hours (depending also on
the frequency with which the EMS updates) is much
more relevant than model performance over the full
24 h. To account for this, different forecast horizons
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Table 1: Model Parameters with Physical Equivalents and Derived Initial Guesses compared to the Identified Values

Physical Equivalent Unit Initial Guess Expected Range Identified Parameter

p0 Ta
◦C 10.0 −10.0 to 30.0 ·10−0 19.1

p1
∆hd·A
cm·Vm·ρm

1/s 2.71 · 10−5 0.0 to 1.81 · 10−4 9.60 · 10−2

p2 Tm
◦C 20.0 10.0 to 30.0 ·10−0 18.8

p3
Ct

cm·Vm·ρm
7.34 · 10−5 0.0 to 1.31 · 10−1 2.93 · 10−2

p4
Qw

∆tw·cm·Vm·ρm

◦C/s 1.03 · 10−5 0.26 · 10−5 to 3.42 · 10−5 4.33 · 10−4

p5
COP

cm·Vm·ρm

◦C/J 2.05 · 10−7 0.52 · 10−7 to 6.84 · 10−7 1.35 · 10−7

from 24 h down to 1 h are evaluated, with a resolution
of the rolling horizon of ∆tRH = 600 s.

NUMERICAL RESULTS

The parameter identification problem is thus solved
with 5760 points of measured data (4 days in minutely
resolution). With a number of discretization points
chosen as ndis = 0.7 · nt, the NLP resulting from the
full discretization scheme consists of 4037 variables,
for which an optimal solution is found within 554 s.
The identified parameters are displayed as well in Tab.
1, together with the initial guesses and expected range.
Major displacement from the initial guesses by more
than one order of magnitude is present only for p1 and
p3. This is to be expected, since these parameters ac-
count for uncertain and very device-specific properties
like heat capacity and heat transfer coefficients of the
tank. Only in the cases of p1 and p4 do the identified
parameters fall outside of the bounds of expected val-
ues. Whether this is due to the found local solution
differing from a possible ’true’ global solution, due
to processes not considered in the formulation of the
physical model ODE, or simply due to operation of
the milk cooling system different to the expectations
used in the initial guesses, is unclear.

In general, while the model function was derived
using physical descriptions of the relevant processes,
the overall model trained on data does not necessarily
match these expectations of physical meaning. Pro-
cesses not considered or unduly simplified in the model
formulation, as well as simple measurement noise and
other influences, are all included in the fitting of the
parameters on the measured data, and can have a large
influence on the identified values. The fit model should
be checked and evaluated with the same scrutiny as
any data-based model. A visual comparison of in-
dividual 24 h-forecasts against the measured data is
presented in Fig. 2. For both training and test set,
out of the nRH = 432 available forecasts, only those
for i = 0, 144, 288, 432 are shown, leaving out all
overlapping ones in between. The data show an accor-
dance of modelled and observed temperature for all
important operation phases.

Main discrepancies between model forecasts and
measured temperatures occur during the cooling down
phase after cleaning (which would not matter in a
real EMS system), during the milking phases, where
the simplifying assumption of instantaneous inflow

is clearly visible (but this offset is limited to a short
duration), and - especially on the test set - as constant
offsets after the individual cooling phases. The latter
observation is most relevant as a source of error in the
overall model performance and especially for use in an
EMS, since these are the periods where cooling activity
could be shifted, and where an accurate estimate of
temperature behaviour is needed. The reason for these
offsets lies in the fact that no information about future
(or even past) heat inflow from milking is available
to the model. The consideration of this inflow with
only a constant parameter obviously cannot account
for the fluctuations present in the real operation. The
different individual model forecasts shown for this
period also display the dynamic nature of the model.
Since future behaviour of the system depends on its
current state, any error within a forecast propagates to
all further values. Overall forecast error therefore can
also depend on the starting point of the integration, as
visible in the second and fourth day of the test period,
which produce larger deviations than the first and third.

Tab. 2 shows mean and standard deviation of the
performance measures for both training and test set of
all individual forecasts within the rolling horizon, for
forecast horizons of 24, 12, 6 and 1 h. As expected,
model performance on the data in the training set is
notably better than for the unseen data of the test set
for all error measures. The standard deviations are
used as secondary metrics for the distribution of per-
formances, although interpretation is difficult since
these are not necessarily normal distributions, but in-
creasingly skewed when average model performance is
better. Nonetheless, they indicate that within the set of
forecasts of the rolling horizon, there are large differ-
ences in performance. This matches the observation of
starting time (rather, initial state) having a large influ-
ence onto the forecast. Overall, the percentage model
performances for full day forecasts of around 30 % on
the test set confirm the visual impression of an ade-
quate forecasting ability with room for improvement.
This does however not provide any clear inferences
for its designated application in an EMS. Values of
the use case-specific MAEEMS provide a more tangible
estimate here. Assuming a temperature margin of 1◦C
for EMS operation, forecast errors should be well be-
low this bound, although there is no definite threshold.
This is the case for 1 h forecasts, but the MAEEMS of
1.7◦C on the test set observed for 24 h forecasts is very
high for beneficial use in an EMS. Notably, the shorter
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Figure 2: Individual 24 h-Forecasts of the Milk Cooling Model against Measured Data of Training and Test Set

Table 2: Mean Performance Measures of the Milk Cooling Model for Different Forecast Horizons

∆tfh Set µMAPE[%] σMAPE µNRMSE σNRMSE µMAEEMS σMAEEMS

in % in % in % in % in ◦C in ◦C

24 h Training 11.55 6.57 15.74 3.92 0.67 0.47
Test 29.41 13.39 28.86 9.74 1.74 0.91

12 h Training 10.46 9.07 15.30 7.19 0.54 0.50
Test 22.44 18.52 25.83 13.58 1.32 1.20

6 h Training 8.68 8.99 12.45 8.30 0.46 0.55
Test 15.33 16.99 18.70 14.50 0.98 1.37

1 h Training 4.28 6.22 5.55 8.51 0.24 0.46
Test 5.95 8.94 7.59 12.07 0.38 1.08

forecasts generated in the rolling horizon evaluation
seem to behave even more diversely than the full-day
forecasts. The standard deviations of the performance
measures increase with decreasing forecast horizons.
This again shows the strong dependency on the start-
ing point of the forecast, which is exacerbated by the
additionally generated auxiliary controls being only
instantaneous influences, even though in reality these
processes last longer. The MAEEMS decreases as ex-
pected with decreasing forecast horizon, and for ∆tfh
shorter than six hours, the error is below the discussed
bound of 1◦C also for the test set. This does not neces-
sarily mean that the model already allows for optimal
energy management, but it shows the possible use of
local models with realistic handicaps in an EMS.

CONCLUSION AND OUTLOOK

Accurate modelling of dynamical systems is a neces-
sary but complex step in the development of a forecast-
based EMS. To develop a model usable and trans-
ferable in practice, inclusion of device-specific mea-
surement data in the form of PI or similar fitting ap-
proaches is unavoidable. The presented work shows
that a physics-based approach to this can embed impor-

tant information in the model to help performance even
with lacking data. However, this also means a stronger
reliance on expert knowledge, and makes the approach
less transferable to other types of devices compared
to purely data-based approaches. For the considered
milk cooling system, forecasting quality is at least
comparable to results from fully data-based methods
published previously for the same dataset (Lachmann
and Büskens, 2021), where even more information
was provided as model inputs from preprocessing. A
higher forecast performance through improvements in
the model, intermediate model updates, or improve-
ments in data preprocessing may be possible. The
main obstacle of the data not containing all needed
information about future heat inflow however remains.

The question of what level of model performance
is needed for successful energy management cannot
be answered definitely, but the constraints to be ful-
filled during the operation of the milk cooling system
provide some guidance. Assuming a conservative 1◦C
margin for EMS operation, the MAEEMS computed for
24 h forecasts is quite large. For shorter forecast hori-
zons, errors well below this goalpost are reached. In a
frequently updating EMS, these short term forecasts
would be most relevant and flow directly into control
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values that are actually applied before the next itera-
tion of the system. The question of whether optimizing
energy use over a short horizon with good model fore-
casts, or over a longer horizon with less accurate model
forecasts leads to better outcomes provides an inter-
esting setup for further studies. Important future steps
also include the direct comparison of models devel-
oped without any assumptions on physical behaviour
of the system, and the transfer of both approaches to
other relevant thermal storages. The development and
test of an EMS using these methods hold their own
challenges; Already now, however, the practicability
and the possible benefits of intelligent energy man-
agement of large thermal storages in the agricultural
domain can be shown, motivating further research and
development.
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M. Lachmann and C. Büskens. A Hybrid Approach
for Data-Based Models Using a Least-Squares
Regression. In Optimization and Learning,
Communications in Computer and Information

Science, page 62–73, Cham, 2021. Springer In-
ternational Publishing.

M. Lachmann, J. Maldonado, W. Bergmann, F. Jung,
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