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ABSTRACT 

In modern oceanography Photosynthetically Available 

Radiation (PAR) is used for modelling vegetation 

growth as it is a requirement for the process of 

photosynthesis. PAR as integrated value of the light 

spectrum between 400-700 nm can be measured directly 

using respective sensor systems. However, PAR can 

also be determined indirectly using measurements from 

only a small number of discrete wavelengths. In this 

paper, such a modelling approach is presented for 

predicting PAR in the water column. The approach uses 

spectral information within the water column and from 

above the sea surface. Three different modelling 

approaches based on artificial intelligence (AI) were 

used. It was shown that the artificial neural network 

(ANN) approach outperformed the regression tree (RT) 

and the linear regression (LR) approaches. It was also 

shown that the models generalise well, with an accuracy 

loss of 10 % based on the median, on data recorded in 

other geolocations without additional modification or 

re-training.  

INTRODUCTION 

In modern oceanography, one of the important 

parameters is Photosynthetically Available Radiation 

(PAR), which is the integrated radiation between 400-

700 nm. It can be used for modelling vegetation growth 

due to being a requirement for the photosynthesis 

process (Holinde and Zielinski, 2016; Wang et al., 

2013).  

Therefore, measuring PAR is important. As proven in 

previous work, the PAR values can be re-constructed 

using only discrete wavelengths from the underwater 

light field and, if necessary, additional environmental 

parameters (Stahl et al., 2022; Kumm et al., 2022). 

Predicting PAR has been explored in the context of 

autonomous Argo Float devices (Sloyan et al., 2018) in 

(Stahl et al., 2022) using multiple linear regression and 

regression trees. Kumm et. al. (2022) showed that these 

results can be improved by using artificial neural 

networks-based models and further improved by 

incorporating additional environmental parameters, i.e. 

pressure. Due to the heavy dependency of the 

underwater light field on the incoming surface 

irradiance (Es) (Wollschläger et al., 2020d), an 

alternative to incorporate pressure measurements to 

improve accuracy would be using these surface light 

field measurements. However, since Argo floats operate 

autonomous underwater for long time, simultaneous 

measurements of the surface light field is not an option. 

A similar way of measuring PAR is being conducted by 

Freefall Profilers (Figure 1). However, different to Argo 

Floats, these measurements also comprise Es. Therefore, 

this study tries to map the approaches from Kumm et al 

(2022) and Stahl et al (2022) to the freefall profiler 

platform. In addition, it will be investigated if 

incorporating Es into the model building increases the 

accuracy. It will also be investigated if models trained 

on one set of experiments can be generalised to data 

from other measurements, i.e. other geolocations. If 

possible, it would allow marine scientists to reuse the 

developed models without re-training. 
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Figure 1 – Freefall profiler. 

RADIOMETRIC PROFILING 

For the data acquisition, the underwater light field was 

investigated using a free-falling profiling system 

(HyperPro II; Sea-Bird Scientific, USA, former 

Satlantic), which is designed to slowly sink vertically 

through the water column (Figure 1). The HyperPro II 

was equipped with two hyperspectral HyperOCR 

radiometers (Sea-Bird Scientific, USA, λ=350-800 nm) 

measuring different parts of the underwater light field: 

A planar cosine radiometer was mounted looking 

upward in order to determine the downwelling 

irradiance Ed(λ), thus the overall light field propagating 

from the from the sea surface into the depth. Another, 

radiance-type radiometer with a field-of-view of 8.5° 

was mounted looking downward to measure the 

upwelling radiance Lu(λ), thus the light field scattered 

back from the depth in a narrow cone in sinking 

direction. A third planar cosine radiometer was placed 

as reference in an unshaded, upright position on an 

elevated position on the ship in order to determine the 

downwelling irradiance Es(λ) above the seawater, thus 

the light field impinging on the sea surface. Its 

measurements allow the correction of the in-water 

measurements for general changes in the light field (e.g. 

temporary cloud coverage) during the deployment of the 

HyperPro II. The HyperPro II also contains sensors for 

additional parameters, like temperature, conductivity, 

depth, chlorophyll-a fluorescence, backscatter, and tilt 

of the instrument. All sensors on the instrument were 

pre-calibrated by the manufacturer, and the radiometers 

were checked with a reference lamp (FieldCal, TriOS 

GmbH, Germany) before and after the cruise, 

confirming that the initial calibration was still valid. 

The handling of the HyperPro II followed the same 

protocol as in Holinde and Zielinski (2016), 

Mascarenhas et al. (2017), and Wollschläger et al. 

(2020d): Prior to the deployment of the HyperPro II at a 

station, the depth sensor was tared on deck of RV 

Heincke (Alfred-Wegener-Institut Helmholtz-Zentrum 

für Polar- und Meeresforschung, 2017) with the 

instrument in an upright position in order to adjust it to 

the current air pressure and ensuring correct in-water 

readings of the depth. Afterwards, the HyperPro II was 

deployed from the ship’s stern, letting it drift to a 

distance of approx. 30 m to avoid shadow anomalies on 

the underwater measurements caused by the ship and its 

superstructures. Per station, one to three profiles were 

taken, depending on available time. All profiles were 

done as deep as possible (limited by the length of the 

instrument cable), but at least until the lower limit of the 

euphotic zone (depth in which 1% of surface PAR is 

available). Data were recorded using the SatView 

software (version 2.9.5_7). During data processing 

readings corresponding to an instrument tilt of >5° were 

discarded, as a vertical orientation of the instrument is 

necessary for correct measurements. 

MODELLING 

For modelling purposes, data from the HE533 

Expedition (Voß et al., 2020e) was used after pre-

processing, i.e. normalisation and removal of data 

records with missing values. Random sampling without 

replacement was applied, to split the HE533 data into a 

training set (70 %) and a test set (30 %). The training set 

was used to learn three different AI based models, i.e. a 

Linear Regression model (LR), an Artificial Neural 

Network model (ANN), and a Regression Tree 

model (RT). 

The test set was then used to validate the models 

generated in terms of accuracy. The outcome of this 

validation serves as a baseline to investigate the 

generalisability of the different models to measurements 

in other geolocations. 

The models generated on HE533 where then applied on 

the other datasets available and evaluated in terms of 

accuracy. This accuracy was then compared with the 

baseline accuracy calculated from the HE533 test data. 

The modelling approach described is visualised in 

Figure 2.  

EXPERIMENTAL SETUP 

Publicly available datasets from different ship cruises 

are used. All datasets can be found on the data portal 

Pangaea (www.pangaea.de). The data from the cruise 

HE533 (Voß et al., 2020e) was used to train the different 

models, while the data from the other cruises was used 

for validation (Friedrichs et al., 2020; Mascarenhas et 

al., 2020; Voß et al., 2020f, 2020a, 2020b, 2020c, 

2020d; Wollschläger et al., 2020a, 2020b, 2020c). The 

HE533 dataset contains originally 9858 tuples of which 
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37.77 % had to be discarded because of missing values. 

The combined dataset for validation contains 64060 

tuples of which 23.05 % for experiment 1 and 23.14 % 

for experiments 2 and 3 had to be discarded also because 

of missing values.  

Figure 2: Modelling approach used 

All models were generated using the KNIME 

workbench (Berthold et al., 2009). An ANN was used 

with one hidden layer containing 100 hidden units and 

trained for 1,000 epochs, using adaptive RProp 

(Riedmiller and Braun, 1993). For the RT the procedure 

described by Breiman et al. (1984) is applied with a 

couple of simplification, for instance no pruning, not 

necessarily binary trees. LR model uses standard 

multiple linear regression (Freedman, 2009).  

Three sets of experiments were carried out. In all the 

experiments, the models were trained using the HE533 

dataset. In the first set of experiments, the models were 

trained on three wavelengths measured in the water 

column (Ed), 400 nm, 412 nm, and 490 nm, based on 

(Stahl et al., 2022). In the second set of experiments, the 

full spectrum of the surface light (Es) between 400 nm 

and 700 nm, in 1 nm steps, was added to the inputs. In 

the third set of experiments, the full Es spectrum was 

replaced by the same wavelengths that were used from 

the underwater light field. The results of the experiments 

are presented in the next section.   

EXPERIMENTAL RESULTS AND DISCUSSION 

For comparing the models, the R2 values were calculated 

on the test data (see Figure 2). The R2 value was chosen 

as metric to ensure comparability with previously 

published results (Kumm et al., 2022; Stahl et al., 2022).  

The results on the three experiments can be found in 

Table 1, where the R2 values on HE533 correspond to 

the left hand side of Figure 2, whereas the R2 for all 

datasets except HE533 correspond to the right hand side 

of Figure 2. 

As can be seen in Table 1, the R2 values on all datasets 

are lower compared with R2 values on test data from 

HE533. This was expected since the additional data was 

not involved in training the models and were recorded 

in different geolocations with different physical 

properties. 

Table 1: R2 values for different models using Multiple 
Linear Regression (LR), Neural Network (ANN) and 
Regression Tree (RT). 

Experiment 

# 

Trained 

on  
Model  

R2 on 

HE533  

R2 

(all 

Datasets 

except 

HE533) 

1 

HE533 

Ed(400), 

Ed(412), 

Ed(490)  

LR 0.984 0.884 

ANN 0.986 0.879 

RT 0.972 0.821 

2 

HE533 

Es(full 

spectru

m) and

Ed(400),

Ed(412),

Ed(490)

LR 0.984 0.035 

ANN 0.989 0.899 

RT 0.977 0.795 

3 

HE533 

Es(400), 

Es(412), 

Es(490) 

and 

Ed(400), 

Ed(412), 

Ed(490) 

LR 0.982 0.880 

ANN 0.986 0.919 

RT 0.973 0.822 

When comparing Experiment 2 with Experiment 1, one 

can observe that the R2 values are in the same order of 

magnitude for the evaluation on HE533, i.e. there was 

no improvement.  However, when comparing results for 

all datasets, it can be observed that for ANNs the 

accuracy increases by 2.0 % whereas the performance 

for the regression tree deceases by 2.6 %. Noticeable, 

the linear regress decreases in performance by 84.9 %. 

It is believed that this underperformance is caused by 

outliers in some of the additional spectral information 

from the surface light. The linear regression approach 

will consider all spectral information including outliers. 

On the other hand, regression trees perform an internal 

selection of the best spectral information for branching 

and building the tree structure. Therefore, outliers may 

not be selected for branching. A neural network can also 

cope very well with outliers, since they can model non-

linear dependencies.  
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When comparing Experiment 3 with Experiment 1 one 

can observe that the R2 values are in the same order of 

magnitude, even for linear regression. This is in line 

with the observations about linear regression 

performance in Experiment 2, since in Experiment 3 a 

limited spectrum, i.e. number of input variables, was 

used. The datasets were normalised before training and 

validation took place.  

Comparing results on HE533, with the results on all 

datasets except HE533 and for all experiments, once can 

see that the accuracy drops by approximately 10 % using 

median. The neural network-based model outperformed 

linear regression and regression tree-based models. This 

is probably because there are some non-linear factors 

that a neural network can compensate better. These 

results are in line with the findings reported by Kumm 

et al. (2022). 

It was shown that spectral information from the surface 

light can be used to improve the generalisability of the 

models, especially of the ANN.  

CONCLUSIONS AND FUTURE WORK 

The paper presented a modelling approach for 

predicting PAR in the water column, which uses 

selected spectral information within the water column 

and additionally surface spectral information. Three 

different AI-based modelling approaches where used. It 

was shown that the ANN approach outperformed the RT 

and LR models. It was also shown that the models 

generalise well on data recorded in other geolocations 

without additional modification or re-training.  

It should be noted that the parameter settings of the 

models have not been optimised yet. Therefore, further 

improvements are potentially possible. The selection of 

spectral variables was based on the literature. However, 

it is conceivable that different spectral information may 

result in more accurate models. Also, other 

environmental parameters such as e.g. pressure or 

salinity could potentially improve the models. 

Therefore, a more systematic variable selection process 

will be investigated in the future. In addition, methods 

to improve linear regression models, such as regression 

splines (Friedman, 1991) or generalised additive models 

(Wood et al., 2015), will be investigated.  
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