
On the performance evaluation of synchronous and asynchronous parallel

particle swarm optimisation

Christoph Tholen1 and Lars Nolle1,2

1German Research Center for Artificial Intelligence

Research Department Marine Perception

Marie-Curie-Straße 1

26129 Oldenburg, Germany

Email: {christoph.tholen|lars.nolle}@dfki.de

2Jade University of Applied Science

Friedrich-Paffrath-Straße 101

26919 Wilhelmshaven, Germany

Email: lars.nolle@jade-hs.de

KEYWORDS

Artificial Intelligence, Optimisation, Search Heuristics,

Distributed Computing, PAPSO, PSPSO.

ABSTRACT

In this work, the efficiency (time) and effectivity

(fitness) of two parallel variants of Particle Swarm

Optimisation (PSO) have been evaluated, the

synchronous PSPSO and the asynchronous PAPSO.

In this study, an implementation of PAPSO is

utilised, which deviates from the master-slave

principle. Instead, all particles function as

independent workers, competing for the available

computing resources. If a particle discovers a new best

position, it shares this information with the other

particles. Two well-known test functions, the

Rosenbrock function and the Rastigin function, were

applied for evaluating the efficiency and effectivity of

PSPSO and PAPSO. Firstly, versions of the test

functions with 10, 30, and 60 dimensions were

used. The population size was increased for each

dimensionality from 50 to 100 and finally 200

particles. The results of this set of experiments showed

that both variants of PSO performed similar regarding

to their effectiveness of finding the optimum

solutions. The computing time used by PAPSO, on the

other hand, is significantly smaller than the computing

time needed by PSPSO. On average the PAPSO was

69.1 % faster than the PSPSO on the Rosenbrock

function and 90.3 % faster on the Rastigin function. In

a second set of simulations, the maximum waiting

time was varied from 5 ms to 1,000 ms. It is shown

for both algorithms, that the average computing time

rises linearly with the maximum waiting time.

INTRODUCTION

Computational optimisation is an important tool for

science and engineering. In the past, various optimisation
algorithms were proposed, for instance Genetic

Algorithm (GA) (Holland, 1975), Simulated Annealing

(SA) (Kirkpatrick, 1984), or Particle Swarm

Optimisation (PSO) (Kennedy and Eberhart, 1995).

Usually, optimisation algorithms start with an initial
candidate solution, which is refined iteratively, until a

stopping criterion is met. The refinement of the solution

is undertaken based on method-dependent strategies. For

each refinement the fitness function needs to be

evaluated. The time required for evaluating the fitness

function depends on the optimisation problem at hand.

Therefore, fitness function evaluation can be seen as the

bottleneck of optimisation algorithms. Parallel

optimisation algorithms can be used to overcome this

bottleneck and make use of the computing power of

modern computers (Nolle and Werner, 2017). However,

if the time needed for fitness evaluation is dependent on

the input parameters, synchronous parallelisation might

not be able to unfold its full potential (Nolle and

Werner, 2017; Tholen et al., 2019).

In this research the performance of a variant of PSO,

called parallel asynchronous particle swarm

optimisation (PAPSO) is evaluated empirically.

Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is inspired by the

collective behaviour of real-world entities, such as fish

schools or flocks of birds, that collaborate to achieve a

shared objective (Kennedy and Eberhart, 1995). Each

member of the swarm conducts an individual search, yet

the search behaviour of each particle is influenced by

other swarm members. At the start of a search, every

particle in the swarm begins at a random position and is

assigned a randomly selected velocity for each
dimension of the n-dimensional search space.
Subsequently, the particles traverse the search space

with an adjustable velocity determined by factors

including their current fitness value, the best solution

identified by the particle (cognitive knowledge), and the

best solution found by the entire swarm (social

knowledge) (1):

𝑣⃗𝑖+1 = 𝑣⃗𝑖 ∙ 𝜔 + 𝑟1 ∙ 𝑐1(𝑝⃗𝑏 − 𝑥⃗𝑖) +
𝑟2 ∙ 𝑐2(𝑔⃗𝑏 − 𝑥⃗𝑖).

(1)

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 40

mailto:christoph.tholen@dfki.de

Where 𝑣⃗𝑖+1 denotes the new velocity of a particle and 𝑣⃗𝑖

represents the current velocity of a particle. The variables

𝜔, 𝑐1, and 𝑐2 denote the control parameters of the

algorithm, named inertia weight, cognitive scaling factor,

and social scaling factor respectively. The variables 𝑟1

and 𝑟2 represent random numbers generated from the

interval {0,1}. The variable 𝑥⃗𝑖 represents the current

position of a particle, while 𝑝𝑏 denotes the best-known

position of a particle, and 𝑔⃗𝑏 the best-known position of

the entire swarm.

The next position of a particle can be calculated as

follows:

𝑝⃗⃗⃗𝑖+1 = 𝑝⃗⃗⃗𝑖 + 𝑣⃗⃗⃗𝑖+1 ∙ ∆𝑡. (2)

Where 𝑝𝑖+1 denotes the new position of a particle,

𝑝𝑖 denotes current position of a particle, 𝑣⃗𝑖+1 represents

the new velocity of a particle, and ∆𝑡 correspond to a time

step (Nolle, 2015).

The performance of PSO heavily depends on the chosen

value of the control parameters (Shi and Eberhart, 1998).

In real world application, usually a parameter search is

conducted to find suitable values of the parameters.

However, in this research the control parameters were set

to standard values (Jiang et al., 2017; Umarani and Selvi,

2010) 𝜔= 0.729, 𝑐1 = 𝑐2= 1.49. The velocity vector 𝑣⃗0

was initialised to zero, to speed up the search

(Engelbrecht, 2012). However, the intention of this study

is not to find optimal control parameter settings for the

test functions utilised, but to compare the performance of

the different parallel implementations of PSO.

Parallel Particle Swarm Optimisation

Due to the substantial computational expenses required

for optimising real-world problems, various parallel

adaptations of the Particle Swarm Optimization (PSO)

have been proposed in previous studies (Koh et al., 2006;

Schutte et al., 2004). The categorisation of parallel

optimisation algorithms includes synchronous and

asynchronous variants (Koh et al., 2006).

While the majority of parallel algorithms suggested in the

literature utilise a synchronous software architecture

(Koh et al., 2006), a notable drawback of synchronous

optimisation algorithms is the necessity to balance the

workload among all workers to prevent idle states. This

balance cannot be guaranteed if the time for fitness

evaluation is dependent on the input vector of the fitness

function (Koh et al., 2006).

The Parallel Asynchronous Particle Swarm Optimization

(PAPSO) introduced by Koh et al. (2006) mitigates the

downsides of the synchronous PSO version. This PAPSO

algorithm adheres to the master-slave principle, where

the master thread maintains a queue of all particles ready

for evaluation and handles the decision-making process,

including calculating the next position for all particles.

The master assigns the initial particle (candidate

solution) in the queue to a free thread (slave), which then

evaluates the fitness function and reports the fitness value

back to the master. The master compares the returned

value with the personal best of the particle or the global

best and updates the relevant values if necessary.

Afterward, the master assigns the next particle in the

queue to the slave. The task-queue is designed to ensure

that all particles undergo roughly the same number of

function evaluations (Koh et al., 2006).

In this study, a distinct implementation of PAPSO,

introduced in a previous study (Tholen et al., 2019) is

utilised. This implementation deviating from the master-

slave principle. Instead, all particles function as

independent workers, competing for the available

computing resources. If a particle discovers a new best

position, it shares this information with the other

particles.

The next section describes the fitness functions used for

comparing the performances of Parallel Synchronous

Particle Swarm Optimisation (PSPSO) and PAPSO.

Fitness Functions Used

In this study, two well-known fitness functions, the

Rosenbrock function (Rosenbrock, 1960) and the

Rastrigin function (Rastrigin, 1974), are used for

benchmarking the PSO variants under investigation.

The Rosenbrock function in a unimodal n-dimensional

function often used for evaluating optimisation

algorithms:

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 +𝑑−1

𝑖=1

(𝑥𝑖 − 1)2].
(3)

Here, d denotes the number of dimensions, i.e. the

number of inputs, of the function. The function has a

distinctive long, narrow, and curved valley, which

presents a challenging landscape for optimisation

algorithms.

The Rastrigin function is a multimodal n-dimensional

function also often used as a test function for evaluating

optimisation algorithms:

𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

. (4)

In (4) d also represents the dimensionality of the function.

In this highly multimodal function, the locations of the

minima are regularly distributed.

Researchers commonly employ these two test functions

in comparative studies to gauge the efficacy and

adaptability of various optimization techniques in

navigating its intricate solution space (Clerc and

Kennedy, 2002; Gaviano et al., 2012).

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 41

According to Venter (2006), synchronous PSO

implementations led to poor parallel speedup in cases

were the calculation of the fitness value depends on the

candidate solutions x being analysed.

Since the evaluation time of the test functions mentioned

above do not depend on x, a time delay based on x is

introduced as follows:

𝑡𝑤(𝑥) =
∑ 𝑥𝑖

𝑑
𝑖=1

𝑥𝑚𝑎𝑥
∙ 𝑡𝑚𝑎𝑥 (5)

Where tw is the time delay, xmax represents the maximum

sum of the input vector x, and tmax corresponds to the

maximum waiting time. Figure 1 shows the pseudocode

for fitness function evaluation used for the experiments.

Fitness(x)do

 if Rosenbrock do

 f(x):= Eq. 3

 else do

 f(x):= Eq. 4

 endif

 tw := Eq. 5

 sleep for tw

 return f(x)

end

Figure 1: Pseudocode for fitness function used

As it is shown in Figure 1, the fitness values are

calculated using the original test functions before waiting

for tw.

EXPERIMENTAL SETUP

Similar experiments were carried out for both algorithms

under investigation, i.e. PAPSO and PSPSO. Within

these experiments, all possible permutations of the

parameters dimensionality d and number of particles n

were evaluated using the following values:

𝑑 = {10,30,60},

𝑛 = {50,100,200}.
(6)

For each combination, 200 runs of the algorithm were

conducted. In each run, the number of iterations was

chosen to be 1,000. For all experiments, the maximum

waiting time tmax was set to 100 ms.

Since for real-world applications, the time consumed by

the fitness evaluation is unknown, a second set of

experiments was conducted, varying the maximum

waiting time tmax as follows:

𝑡𝑚𝑎𝑥 = {5, 10, 50, 100, 250, 500, 1000} 𝑚𝑠. (7)

For this set of experiments, only the Rosenbrock function

with d=30 was used, while the number of particles was

set to n=100.

The results of both sets of experiments are given and

discussed in the next section.

RESULTS AND DISCUSSION

Figure 2 provides an example of the fitness over time for

200 runs as a waterfall chart for the PAPSO, with

n = 200 on the Rastrigin function with d = 60. It can be

observed that in all runs the PAPSO converged after

approximately 500 ms. The maximum time for

completing the 1,000 iterations was 3.66 seconds,

whereas the minimum time was 1.89 seconds.

Figure 2: Fitness over time for Rastrigin with d =60
PAPSO with n = 200

Figure 3 depicts another example of the fitness over time

as a waterfall chart for the 200 runs for the PSPSO, using

the same parameters as above. It is shown that in all runs

the PSPSO converged after approximately 10,000 ms.

The maximum time for completing the 1,000 iterations

was 47.20 seconds, whereas the minimum time was

34.46 seconds.

Figure 3: Fitness over time for Rastrigin with d =60
PSPSO with n = 200

The median fitness F achieved in this experiment by

PAPSO was 81.59, while the median fitness achieved by

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 42

PSPSO was 79.10. Their significance level here is

p =0.1159 and hence, both algorithms performed similar

regarding the quality of the solutions.

The summarised results of the first set of experiments can

be found in Tables 1-4. While Table 1 and 3 are

summarising the computing time T of the different

experiments for the Rosenbrock and the Rastrigin

function respectively, and in Table 2 and 4 the statistics

of the fitness F values are given.

It can be seen from Table 2 that for PSPSO performing

on the 10-dimensional Rosenbrock function, one run

resulted in a local optimum, i.e. the algorithm was not

able to find the global optimum. However, this is not

uncommon when applying search heuristics.

The following discussion of the first set of experiments

is based on the median values. For all functions and

chosen values of d it can be seen that

𝐹̃50 ≤ 𝐹̃100 ≤ 𝐹̃200, which was expected. For the

Rosenbrock function, the median of the computing time

T for PAPSO seems to be unaffected by the number of

particles, while for PSPSO it can be observed that

𝑇̃𝑛=50 ≥ 𝑇̃𝑛=100 ≥ 𝑇̃𝑛=200. For all experiments, it was

shown that 𝑇̃𝑃𝑆𝑃𝑆𝑂 ≥ 𝑇̃𝑃𝐴𝑃𝑆𝑂.

For the computing time T, it can be observed that the

significance level p is <0.0001 for all combinations.

Hence, the computing time used by PAPSO is

significantly smaller than the computing time needed by

PSPSO.

For the Rosenbrock function, seven out of nine

combinations resulted in a p–value > 0.05. Therefore, the

results are not significantly different, while for the

Rastigin Function only two out of nine combinations

showed this behaviour.

Table 1: Summarised Results (Computing Time T) for different values of d and n on Rosenbrock function

10 Dimensions 30 Dimensions 60 Dimensions

n 50 100 200 50 100 200 50 100 200

P
A

P
S

O
 Avg. 7.29 7.79 8.27 5.79 5.49 5.51 8.38 7.90 7.45

Med. 7.06 7.50 8.17 5.32 4.90 4.61 8.38 8.01 7.50

Std. 1.69 1.47 0.88 2.41 2.30 2.14 1.54 1.40 1.55

Min. 4.30 4.28 6.26 1.70 2.73 2.90 4.57 4.21 3.73

Max. 17.49 16.53 17.85 11.61 12.52 12.02 12.70 12.19 11.05

P
S

P
S

O

Avg. 16.72 25.89 46.57 14.68 23.25 42.28 14.35 22.86 42.94

Med. 15.05 24.39 45.90 14.08 22.97 41.96 14.34 22.62 42.21

Std. 4.29 3.14 4.44 2.69 2.70 3.26 1.38 1.71 3.23

Min. 11.52 22.23 41.14 10.11 19.22 36.68 10.98 19.22 37.12

Max. 55.59 37.93 64.46 25.05 33.07 52.21 19.64 29.43 51.54

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Table 2: Summarised Results (Fitness F) for different values of d and n on Rosenbrock function

10 Dimensions 30 Dimensions 60 Dimensions

n 50 100 200 50 100 200 50 100 200

P
A

P
S

O
 Avg. 1.32 0.63 0.39 36.42 30.22 29.27 167.83 124.88 114.95

Med. 0.76 0.43 0.28 23.48 22.16 21.20 153.07 125.05 102.13

Std. 1.44 0.92 0.62 29.01 24.35 23.12 247.54 55.82 47.36

Min. 0.00 0.00 0.01 0.00 0.11 0.01 4.21 4.65 2.02

Max. 5.73 6.51 4.28 121.21 107.86 87.47 3525.94 409.89 285.39

P
S

P
S

O

Avg. 59.73 1.02 0.36 38.81 33.96 30.06 138.87 110.25 103.98

Med. 0.68 0.47 0.32 24.15 22.81 22.12 146.61 105.81 101.54

Std. 828.68 5.39 0.52 30.33 26.84 24.16 50.51 41.65 44.22

Min. 0.00 0.00 0.00 0.13 0.00 0.06 35.77 22.07 17.25

Max. 11720.40 75.70 4.80 139.86 142.30 109.78 305.52 234.73 227.52

p 0.3194 0.3137 0.6004 0.4211 0.1452 0.7385 0.1058 0.0032 0.0171

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 43

Table 3: Summarised Results (Computing Time T) for different values of d and n on Rastrigin function

10 Dimensions 30 Dimensions 60 Dimensions

n 50 100 200 50 100 200 50 100 200

P
A

P
S

O
 Avg. 1.84 2.36 2.84 1.41 1.80 2.12 1.37 1.69 2.32

Med. 1.18 1.75 2.59 1.00 1.38 1.83 1.18 1.60 2.21

Std. 1.52 1.56 1.18 1.17 1.07 0.86 0.58 0.37 0.35

Min. 0.46 0.71 1.10 0.80 0.90 1.22 1.03 1.41 1.89

Max. 7.81 9.67 6.47 11.62 6.01 6.06 4.57 3.99 3.66

P
S

P
S

O

Avg. 12.37 20.86 40.27 11.45 20.51 38.87 10.79 19.47 37.77

Med. 11.43 20.29 39.78 10.42 19.99 38.32 9.93 18.43 37.51

Std. 2.61 2.64 3.35 2.65 2.45 3.02 1.93 2.15 2.85

Min. 9.03 17.29 34.93 8.85 17.58 34.87 9.01 17.20 34.86

Max. 21.08 32.50 51.62 25.64 28.10 49.96 17.96 29.78 47.20

p < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 4: Summarised Results (Fitness F) for different values of d and n on Rastrigin function

10 Dimensions 30 Dimensions 60 Dimensions

n 50 100 200 50 100 200 50 100 200

P
A

P
S

O
 Avg. 5.17 3.37 2.22 40.36 33.72 28.07 105.92 95.91 81.46

Med. 4.97 2.98 1.99 40.30 33.83 27.36 104.47 95.52 81.59

Std. 2.61 1.69 1.25 9.04 7.61 6.72 18.20 14.73 11.83

Min. 0.00 0.00 0.00 17.91 16.91 11.94 62.68 61.69 49.75

Max. 16.91 8.95 6.96 68.65 58.70 46.76 164.21 132.33 127.36

P
S

P
S

O

Avg. 4.43 2.99 1.77 37.64 31.50 27.02 96.54 88.96 79.46

Med. 3.98 2.98 1.99 35.82 31.34 27.36 96.51 87.56 79.10

Std. 2.01 1.62 1.10 8.72 7.85 6.26 15.89 15.88 13.50

Min. 0.99 0.00 0.00 12.93 12.93 9.95 53.74 44.77 44.77

Max. 10.94 8.95 4.97 69.65 57.71 42.78 143.27 146.26 120.39

p 0.0016 0.0222 0.0002 0.0023 0.0043 0.1067 < 0.0001 < 0.0001 0.1159

Table 5: Summarised Results (Computing Time T) for different values of maximum waiting time tmax

tmax 5 10 50 100 250 500 1000

P
A

P
S

O
 Avg. 1.79 2.76 3.58 5.49 12.69 23.21 43.44

Med. 1.79 2.69 3.26 4.90 11.01 21.53 37.11

Std. 0.10 0.73 1.36 2.30 5.78 10.79 21.61

Min. 1.58 1.63 1.78 2.73 5.36 10.13 16.02

Max. 2.11 4.50 7.46 12.52 31.33 55.92 118.80

P
S

P
S

O

Avg. 18.15 18.03 20.38 23.25 31.95 48.29 75.31

Med. 17.80 17.81 20.33 22.97 31.03 45.47 69.80

Std. 0.75 0.63 1.61 2.70 5.76 12.98 22.86

Min. 17.64 17.48 18.08 19.22 23.74 29.63 42.98

Max. 20.35 21.89 26.42 33.07 52.73 98.13 144.60

p < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 6: Summarised Results (Fitness F) for different values of maximum waiting time tmax

tmax 5 10 50 100 250 500 1000

P
A

P
S

O
 Avg. 33.28 32.60 31.35 30.22 34.67 34.95 37.33

Med. 21.77 21.76 21.98 22.16 22.47 22.34 22.81

Std. 29.71 28.25 23.99 24.35 26.63 28.36 28.14

Min. 0.00 0.00 0.11 0.11 0.05 0.04 0.15

Max. 90.14 91.96 88.09 107.86 88.63 140.59 138.36

P
S

P
S

O

Avg. 36.42 36.70 34.65 33.96 35.13 32.61 32.59

Med. 23.06 23.06 22.98 22.81 22.82 22.89 22.97

Std. 26.15 27.60 27.69 26.84 26.45 27.35 24.83

Min. 0.17 0.02 0.01 0.00 0.06 0.00 0.00

Max. 106.46 87.18 152.92 142.30 99.55 195.20 89.60

p 0.2626 0.1429 0.2035 0.1452 0.8625 0.4015 0.0748

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 44

The results achieved by the second set of experiments can

be found in Table 5 and Table 6 and are summarised in

Figure 4. In this figure, the average computing time is

plotted over the maximum waiting time. It can be

observed that for both algorithms the computing time

increases linearly with increasing maximum waiting

time. The R2 value of the linear regression is 0.999 for

PSPSO and 0.9992 for PAPSO. Therefore, the average

computing time rises linearly with the maximum waiting

time for both algorithms.

Figure 4: Average computing time per run for different
maximum waiting times tmax

CONCLUSIONS AND FUTURE WORK

In this work, the efficiency (time) and effectivity (fitness)

of two parallel variants of PSO have been evaluated, the

synchronous PSPSO and the asynchronous PAPSO. Two

well-known test functions, the Rosenbrock function and

the Rastigin function, were applied. For each experiment,

200 runs were carried out in order to analyse the results

statistically.

In a first set of simulations, versions of the test functions

with 10, 30, and 60 dimensions, i.e. inputs, were used.

The population size was increased for each

dimensionality from 50 to 100 and finally 200 particles.

The results of this set of experiments showed that both

variants of PSO performed similar regarding to their

effectiveness of finding the optimum solutions. The

computing time used by PAPSO, on the other hand, is

significantly smaller than the computing time needed by

PSPSO.

In a second set of simulations, the maximum waiting time

was varied from 5 ms to 1,000 ms. Simulations were

carried out on the Rosenbrock function only. In this set

of experiments, the number of dimensions was set to30

and the population size was set to 200. It was showed for

both algorithms, that the average computing time rises

linearly with the maximum waiting time.

In conclusion, it can be said that for optimisation

problems were the evaluation of a candidate solution

depends heavily on the candidate solution itself, both

algorithms achieve the same level of effectiveness, i.e.

find similar good solutions. However, in terms of

efficiency, PAPSO clearly outperforms PSPSO, i.e. uses

less run time.

In this research the performance of PAPSO and PSPSO

was evaluated on two different test functions utilising a

set of standard values for the three control parameters.

The next step of this research, the performance of PAPSO

and PSPSO will be evaluated on real world scenarios, for

instance to optimise the candidate selection system of the

PlasticObs+ system (Tholen and Wolf, 2023).

ACKNOWLEDGEMENTS

This work was funded by the Ministry of Science and

Culture, Lower Saxony, Germany, through funds from

the Niedersächsische Vorab (ZN3480).

REFERENCES

Clerc, M., Kennedy, J., 2002. The particle swarm - explosion,

stability, and convergence in a multidimensional

complex space. IEEE Trans. Evol. Computat. 6, 58–

73. https://doi.org/10.1109/4235.985692

Engelbrecht, A., 2012. Particle swarm optimization: Velocity

initialization, in: 2012 IEEE Congress on

Evolutionary Computation. Presented at the 2012

IEEE Congress on Evolutionary Computation, pp. 1–

8. https://doi.org/10.1109/CEC.2012.6256112

Gaviano, M., Lera, D., Mereu, E., 2012. A Parallel Algorithm

for Global Optimization Problems in a Distribuited

Computing Environment. AM 03, 1380–1387.

https://doi.org/10.4236/am.2012.330194

Holland, J., 1975. Adaptation in Natural and Artificial Systems.

Jiang, C., Zhang, C., Zhang, Y., Xu, H., 2017. An improved

particle swarm optimization algorithm for parameter

optimization of proportional–integral–derivative

controller. Traitement du signal 34, 93–110.

https://doi.org/10.3166/ts.34.93-110

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization,

in: Proceedings of ICNN’95-International

Conference on Neural Networks. Presented at the

Proceedings of ICNN’95-international conference on

neural networks, IEEE, pp. 1942–1948.

Kirkpatrick, S., 1984. Optimization by simulated annealing:

Quantitative studies. J Stat Phys 34, 975–986.

https://doi.org/10.1007/BF01009452

Koh, B.-I., George, A.D., Haftka, R.T., Fregly, B.J., 2006.

Parallel asynchronous particle swarm optimization.

Int J Numer Methods Eng 67, 578–595.

https://doi.org/10.1002/nme.1646

Nolle, L., 2015. On a search strategy for collaborating

autonomous underwater vehicles. Mendel 2015, 159–

164.

Nolle, L., Werner, J., 2017. Asynchronous Population-Based

Hill Climbing Applied to SPICE Model Generation

from EM Simulation Data, in: Bramer, M., Petridis,

M. (Eds.), Artificial Intelligence XXXIV, Lecture

Notes in Computer Science. Springer International

Publishing, Cham, pp. 423–428.

https://doi.org/10.1007/978-3-319-71078-5_37

Rastrigin, L., 1974. Systems of Extreme Control.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 45

Rosenbrock, H.H., 1960. An Automatic Method for Finding the

Greatest or Least Value of a Function. The Computer

Journal 3, 175–184.

https://doi.org/10.1093/comjnl/3.3.175

Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George,

A.D., 2004. Parallel global optimization with the

particle swarm algorithm. Int J Numer Methods Eng

61, 2296–2315. https://doi.org/10.1002/nme.1149

Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle

swarm optimization, in: Porto, V.W., Saravanan, N.,

Waagen, D., Eiben, A.E. (Eds.), Lecture Notes in

Computer Science. Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 591–600.

https://doi.org/10.1007/BFb0040810

Tholen, C., Nolle, L., El-Mihoub, T., Dierks, J., Burger, A.,

Zielinski, O., 2019. Automated Tuning Of A Cellular

Automata Using Parallel Asynchronous Particle

Swarm Optimisation, in: ECMS 2019 Proceedings

Edited by Mauro Iacono, Francesco Palmieri, Marco

Gribaudo, Massimo Ficco. Presented at the 33rd

International ECMS Conference on Modelling and

Simulation, ECMS, pp. 30–36.

https://doi.org/10.7148/2019-0030

Tholen, C., Wolf, M., 2023. On the Development of a

Candidate Selection System for Automated Plastic

Waste Detection Using Airborne Based Remote

Sensing, in: Bramer, M., Stahl, F. (Eds.), Artificial

Intelligence XL, Lecture Notes in Computer Science.

Springer Nature Switzerland, Cham, pp. 506–512.

https://doi.org/10.1007/978-3-031-47994-6_45

Umarani, R., Selvi, V., 2010. Particle swarm optimization-

evolution, overview and applications. International

Journal of Engineering Science and Technology 2.

Venter, G., Sobieszczanski-Sobieski, J., 2006. Parallel Particle

Swarm Optimization Algorithm Accelerated by

Asynchronous Evaluations. Journal of Aerospace

Computing, Information, and Communication 3,

123–137. https://doi.org/10.2514/1.17873

AUTHOR BIOGRAPHY

CHRISTOPH THOLEN is a Senior Researcher at the

German Research Center for Artificial Intelligence

(DFKI), in the Marine Perception research department.

His current research interests including the application

of Artificial Intelligence applied to the maritime

context, with a special focus on the identification and

quantification of plastic litter using remote sensing. He

received his doctoral degree in 2022 from the Carl von

Ossietzky University of Oldenburg. From 2016 to

2022, he worked on a joint project between the Jade

University of Applied Science and the Institute for

Chemistry and Biology of the Marine Environment

(ICBM), at the Carl von Ossietzky University of

Oldenburg for the development of a low cost and

intelligent environmental observatory.

LARS NOLLE graduated from the University of

Applied Science and Arts in Hanover, Germany, with a

degree in Computer Science and Electronics. He

obtained a PgD in Software and Systems Security and

an MSc in Software Engineering from the University of

Oxford as well as an MSc in Computing and a PhD in

Applied Computational Intelligence from The Open

University. He worked in the software industry before

joining The Open University as a Research Fellow. He

later became a Senior Lecturer in Computing at

Nottingham Trent University and is now a Professor of

Applied Computer Science at Jade University of

Applied Sciences. He also is affiliated with the Marine

Perception research department at the German

Research Center for Artificial Intelligence (DFKI). His

main research interests are computational optimisation

methods for real-world scientific and engineering

applications.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 20 (2024) Seite 46

