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ABSTRACT 

In this work, the efficiency (time) and effectivity 

(fitness) of two parallel variants of Particle Swarm 

Optimisation (PSO) have been evaluated, the 

synchronous PSPSO and the asynchronous PAPSO. 

In this study, an implementation of PAPSO is 

utilised, which deviates from the master-slave 

principle. Instead, all particles function as 

independent workers, competing for the available 

computing resources. If a particle discovers a new best 

position, it shares this information with the other 

particles. Two well-known test functions, the 

Rosenbrock function and the Rastigin function, were 

applied for evaluating the efficiency and effectivity of 

PSPSO and PAPSO. Firstly, versions of the test 

functions with 10, 30, and 60 dimensions were 

used. The population size was increased for each 

dimensionality from 50 to 100 and finally 200 

particles. The results of this set of experiments showed 

that both variants of PSO performed similar regarding 

to their effectiveness of finding the optimum 

solutions. The computing time used by PAPSO, on the 

other hand, is significantly smaller than the computing 

time needed by PSPSO. On average the PAPSO was 

69.1 % faster than the PSPSO on the Rosenbrock 

function and 90.3 % faster on the Rastigin function. In 

a second set of simulations, the maximum waiting 

time was varied from 5 ms to 1,000 ms. It is shown 

for both algorithms, that the average computing time 

rises linearly with the maximum waiting time.  

INTRODUCTION 

Computational optimisation is an important tool for 

science and engineering. In the past, various optimisation 
algorithms were proposed, for instance Genetic 

Algorithm (GA) (Holland, 1975), Simulated Annealing 

(SA) (Kirkpatrick, 1984), or Particle Swarm 

Optimisation (PSO) (Kennedy and Eberhart, 1995).

Usually, optimisation algorithms start with an initial 
candidate solution, which is refined iteratively, until a 

stopping criterion is met. The refinement of the solution 

is undertaken based on method-dependent strategies. For 

each refinement the fitness function needs to be 

evaluated. The time required for evaluating the fitness 

function depends on the optimisation problem at hand. 

Therefore, fitness function evaluation can be seen as the 

bottleneck of optimisation algorithms. Parallel 

optimisation algorithms can be used to overcome this 

bottleneck and make use of the computing power of 

modern computers (Nolle and Werner, 2017). However, 

if the time needed for fitness evaluation is dependent on 

the input parameters, synchronous parallelisation might 

not be able to unfold its full potential (Nolle and 

Werner, 2017; Tholen et al., 2019).  

In this research the performance of a variant of PSO, 

called parallel asynchronous particle swarm 

optimisation (PAPSO) is evaluated empirically.  

Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) is inspired by the 

collective behaviour of real-world entities, such as fish 

schools or flocks of birds, that collaborate to achieve a 

shared objective (Kennedy and Eberhart, 1995). Each 

member of the swarm conducts an individual search, yet 

the search behaviour of each particle is influenced by 

other swarm members. At the start of a search, every 

particle in the swarm begins at a random position and is 

assigned a randomly selected velocity for each 
dimension of the n-dimensional search space. 
Subsequently, the particles traverse the search space 

with an adjustable velocity determined by factors 

including their current fitness value, the best solution 

identified by the particle (cognitive knowledge), and the 

best solution found by the entire swarm (social 

knowledge) (1): 

𝑣⃗𝑖+1 = 𝑣⃗𝑖 ∙ 𝜔 + 𝑟1 ∙ 𝑐1(𝑝⃗𝑏 − 𝑥⃗𝑖) + 
𝑟2 ∙ 𝑐2(𝑔⃗𝑏 − 𝑥⃗𝑖).

(1)
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Where 𝑣⃗𝑖+1 denotes the new velocity of a particle and 𝑣⃗𝑖

represents the current velocity of a particle. The variables 

𝜔, 𝑐1, and 𝑐2 denote the control parameters of the

algorithm, named inertia weight, cognitive scaling factor, 

and social scaling factor respectively. The variables 𝑟1

and 𝑟2 represent random numbers generated from the

interval {0,1}. The variable 𝑥⃗𝑖 represents the current

position of a particle, while 𝑝𝑏  denotes the best-known

position of a particle, and 𝑔⃗𝑏 the best-known position of

the entire swarm. 

The next position of a particle can be calculated as 

follows:  

𝑝⃗⃗⃗𝑖+1 = 𝑝⃗⃗⃗𝑖 + 𝑣⃗⃗⃗𝑖+1 ∙ ∆𝑡. (2) 

Where 𝑝𝑖+1 denotes the new position of a particle,

𝑝𝑖  denotes current position of a particle, 𝑣⃗𝑖+1 represents

the new velocity of a particle, and ∆𝑡 correspond to a time 

step (Nolle, 2015). 

The performance of PSO heavily depends on the chosen 

value of the control parameters (Shi and Eberhart, 1998). 

In real world application, usually a parameter search is 

conducted to find suitable values of the parameters. 

However, in this research the control parameters were set 

to standard values (Jiang et al., 2017; Umarani and Selvi, 

2010) 𝜔= 0.729, 𝑐1 =  𝑐2= 1.49. The velocity vector 𝑣⃗0

was initialised to zero, to speed up the search 

(Engelbrecht, 2012). However, the intention of this study 

is not to find optimal control parameter settings for the 

test functions utilised, but to compare the performance of 

the different parallel implementations of PSO. 

Parallel Particle Swarm Optimisation 

Due to the substantial computational expenses required 

for optimising real-world problems, various parallel 

adaptations of the Particle Swarm Optimization (PSO) 

have been proposed in previous studies (Koh et al., 2006; 

Schutte et al., 2004). The categorisation of parallel 

optimisation algorithms includes synchronous and 

asynchronous variants (Koh et al., 2006). 

While the majority of parallel algorithms suggested in the 

literature utilise a synchronous software architecture 

(Koh et al., 2006), a notable drawback of synchronous 

optimisation algorithms is the necessity to balance the 

workload among all workers to prevent idle states. This 

balance cannot be guaranteed if the time for fitness 

evaluation is dependent on the input vector of the fitness 

function (Koh et al., 2006).   

The Parallel Asynchronous Particle Swarm Optimization 

(PAPSO) introduced by Koh et al. (2006) mitigates the 

downsides of the synchronous PSO version. This PAPSO 

algorithm adheres to the master-slave principle, where 

the master thread maintains a queue of all particles ready 

for evaluation and handles the decision-making process, 

including calculating the next position for all particles. 

The master assigns the initial particle (candidate 

solution) in the queue to a free thread (slave), which then 

evaluates the fitness function and reports the fitness value 

back to the master. The master compares the returned 

value with the personal best of the particle or the global 

best and updates the relevant values if necessary. 

Afterward, the master assigns the next particle in the 

queue to the slave. The task-queue is designed to ensure 

that all particles undergo roughly the same number of 

function evaluations (Koh et al., 2006). 

In this study, a distinct implementation of PAPSO, 

introduced in a previous study (Tholen et al., 2019) is 

utilised. This implementation deviating from the master-

slave principle. Instead, all particles function as 

independent workers, competing for the available 

computing resources. If a particle discovers a new best 

position, it shares this information with the other 

particles. 

The next section describes the fitness functions used for 

comparing the performances of Parallel Synchronous 

Particle Swarm Optimisation (PSPSO) and PAPSO. 

Fitness Functions Used 

In this study, two well-known fitness functions, the 

Rosenbrock function (Rosenbrock, 1960) and the 

Rastrigin function (Rastrigin, 1974), are used for 

benchmarking the PSO variants under investigation.  

The Rosenbrock function in a unimodal n-dimensional 

function often used for evaluating optimisation 

algorithms:  

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 +𝑑−1

𝑖=1

(𝑥𝑖 − 1)2].
(3) 

Here, d denotes the number of dimensions, i.e. the 

number of inputs, of the function. The function has a 

distinctive long, narrow, and curved valley, which 

presents a challenging landscape for optimisation 

algorithms.  

The Rastrigin function is a multimodal n-dimensional 

function also often used as a test function for evaluating 

optimisation algorithms: 

𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

. (4) 

In (4) d also represents the dimensionality of the function. 

In this highly multimodal function, the locations of the 

minima are regularly distributed.  

Researchers commonly employ these two test functions 

in comparative studies to gauge the efficacy and 

adaptability of various optimization techniques in 

navigating its intricate solution space (Clerc and 

Kennedy, 2002; Gaviano et al., 2012). 
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According to Venter (2006), synchronous PSO 

implementations led to poor parallel speedup in cases 

were the calculation of the fitness value depends on the 

candidate solutions x being analysed. 

Since the evaluation time of the test functions mentioned 

above do not depend on x, a time delay based on x is 

introduced as follows: 

𝑡𝑤(𝑥) =
∑ 𝑥𝑖

𝑑
𝑖=1

𝑥𝑚𝑎𝑥
∙ 𝑡𝑚𝑎𝑥 (5) 

Where tw is the time delay, xmax represents the maximum 

sum of the input vector x, and tmax corresponds to the 

maximum waiting time. Figure 1 shows the pseudocode 

for fitness function evaluation used for the experiments.  

Fitness(x)do 

  if Rosenbrock do 

  f(x):= Eq. 3 

  else do 

  f(x):= Eq. 4 

  endif 

  tw := Eq. 5 

  sleep for tw

  return f(x) 

end

Figure 1: Pseudocode for fitness function used 

As it is shown in Figure 1, the fitness values are 

calculated using the original test functions before waiting 

for tw.  

EXPERIMENTAL SETUP 

Similar experiments were carried out for both algorithms 

under investigation, i.e. PAPSO and PSPSO. Within 

these experiments, all possible permutations of the 

parameters dimensionality d and number of particles n 

were evaluated using the following values: 

𝑑 = {10,30,60}, 

𝑛 = {50,100,200}. 
(6) 

For each combination, 200 runs of the algorithm were 

conducted. In each run, the number of iterations was 

chosen to be 1,000. For all experiments, the maximum 

waiting time tmax was set to 100 ms. 

Since for real-world applications, the time consumed by 

the fitness evaluation is unknown, a second set of 

experiments was conducted, varying the maximum 

waiting time tmax as follows: 

𝑡𝑚𝑎𝑥 = {5, 10, 50, 100, 250, 500, 1000} 𝑚𝑠. (7) 

For this set of experiments, only the Rosenbrock function 

with d=30 was used, while the number of particles was 

set to n=100. 

The results of both sets of experiments are given and 

discussed in the next section. 

RESULTS AND DISCUSSION 

Figure 2 provides an example of the fitness over time for 

200 runs as a waterfall chart for the PAPSO, with 

n = 200 on the Rastrigin function with d = 60. It can be 

observed that in all runs the PAPSO converged after 

approximately 500 ms. The maximum time for 

completing the 1,000 iterations was 3.66 seconds, 

whereas the minimum time was 1.89 seconds.   

Figure 2: Fitness over time for Rastrigin with d =60 
PAPSO with n = 200 

Figure 3 depicts another example of the fitness over time 

as a waterfall chart for the 200 runs for the PSPSO, using 

the same parameters as above.  It is shown that in all runs 

the PSPSO converged after approximately 10,000 ms. 

The maximum time for completing the 1,000 iterations 

was 47.20 seconds, whereas the minimum time was 

34.46 seconds.   

Figure 3: Fitness over time for Rastrigin with d =60 
PSPSO with n = 200 

The median fitness F achieved in this experiment by 

PAPSO was 81.59, while the median fitness achieved by 
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PSPSO was 79.10. Their significance level here is 

p =0.1159 and hence, both algorithms performed similar 

regarding the quality of the solutions.  

The summarised results of the first set of experiments can 

be found in Tables 1-4. While Table 1 and 3 are 

summarising the computing time T of the different 

experiments for the Rosenbrock and the Rastrigin 

function respectively, and in Table 2 and 4 the statistics 

of the fitness F values are given.   

It can be seen from Table 2 that for PSPSO performing 

on the 10-dimensional Rosenbrock function, one run 

resulted in a local optimum, i.e. the algorithm was not 

able to find the global optimum. However, this is not 

uncommon when applying search heuristics.  

The following discussion of the first set of experiments 

is based on the median values. For all functions and 

chosen values of d it can be seen that 

𝐹̃50 ≤ 𝐹̃100 ≤ 𝐹̃200, which was expected. For the

Rosenbrock function, the median of the computing time 

T for PAPSO seems to be unaffected by the number of 

particles, while for PSPSO it can be observed that 

𝑇̃𝑛=50 ≥ 𝑇̃𝑛=100 ≥ 𝑇̃𝑛=200. For all experiments, it was

shown that 𝑇̃𝑃𝑆𝑃𝑆𝑂 ≥ 𝑇̃𝑃𝐴𝑃𝑆𝑂.

For the computing time T, it can be observed that the 

significance level p is <0.0001 for all combinations. 

Hence, the computing time used by PAPSO is 

significantly smaller than the computing time needed by 

PSPSO.   

For the Rosenbrock function, seven out of nine 

combinations resulted in a p–value > 0.05. Therefore, the 

results are not significantly different, while for the 

Rastigin Function only two out of nine combinations 

showed this behaviour.  

Table 1: Summarised Results (Computing Time T) for different values of d and n on Rosenbrock function 

10 Dimensions 30 Dimensions 60 Dimensions 

n 50 100 200 50 100 200 50 100 200 

P
A

P
S

O
 Avg. 7.29 7.79 8.27 5.79 5.49 5.51 8.38 7.90 7.45 

Med. 7.06 7.50 8.17 5.32 4.90 4.61 8.38 8.01 7.50 

Std. 1.69 1.47 0.88 2.41 2.30 2.14 1.54 1.40 1.55 

Min. 4.30 4.28 6.26 1.70 2.73 2.90 4.57 4.21 3.73 

Max. 17.49 16.53 17.85 11.61 12.52 12.02 12.70 12.19 11.05 

P
S

P
S

O
 

Avg. 16.72 25.89 46.57 14.68 23.25 42.28 14.35 22.86 42.94 

Med. 15.05 24.39 45.90 14.08 22.97 41.96 14.34 22.62 42.21 

Std. 4.29 3.14 4.44 2.69 2.70 3.26 1.38 1.71 3.23 

Min. 11.52 22.23 41.14 10.11 19.22 36.68 10.98 19.22 37.12 

Max. 55.59 37.93 64.46 25.05 33.07 52.21 19.64 29.43 51.54 

p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Table 2: Summarised Results (Fitness F) for different values of d and n on Rosenbrock function 

10 Dimensions 30 Dimensions 60 Dimensions 

n 50 100 200 50 100 200 50 100 200 

P
A

P
S

O
 Avg. 1.32 0.63 0.39 36.42 30.22 29.27 167.83 124.88 114.95 

Med. 0.76 0.43 0.28 23.48 22.16 21.20 153.07 125.05 102.13 

Std. 1.44 0.92 0.62 29.01 24.35 23.12 247.54 55.82 47.36 

Min. 0.00 0.00 0.01 0.00 0.11 0.01 4.21 4.65 2.02 

Max. 5.73 6.51 4.28 121.21 107.86 87.47 3525.94 409.89 285.39 

P
S

P
S

O
 

Avg. 59.73 1.02 0.36 38.81 33.96 30.06 138.87 110.25 103.98 

Med. 0.68 0.47 0.32 24.15 22.81 22.12 146.61 105.81 101.54 

Std. 828.68 5.39 0.52 30.33 26.84 24.16 50.51 41.65 44.22 

Min. 0.00 0.00 0.00 0.13 0.00 0.06 35.77 22.07 17.25 

Max. 11720.40 75.70 4.80 139.86 142.30 109.78 305.52 234.73 227.52 

p 0.3194 0.3137 0.6004 0.4211 0.1452 0.7385 0.1058 0.0032 0.0171 
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Table 3: Summarised Results (Computing Time T) for different values of d and n on Rastrigin function 

10 Dimensions 30 Dimensions 60 Dimensions 

n 50 100 200 50 100 200 50 100 200 

P
A

P
S

O
 Avg. 1.84 2.36 2.84 1.41 1.80 2.12 1.37 1.69 2.32 

Med. 1.18 1.75 2.59 1.00 1.38 1.83 1.18 1.60 2.21 

Std. 1.52 1.56 1.18 1.17 1.07 0.86 0.58 0.37 0.35 

Min. 0.46 0.71 1.10 0.80 0.90 1.22 1.03 1.41 1.89 

Max. 7.81 9.67 6.47 11.62 6.01 6.06 4.57 3.99 3.66 

P
S

P
S

O
 

Avg. 12.37 20.86 40.27 11.45 20.51 38.87 10.79 19.47 37.77 

Med. 11.43 20.29 39.78 10.42 19.99 38.32 9.93 18.43 37.51 

Std. 2.61 2.64 3.35 2.65 2.45 3.02 1.93 2.15 2.85 

Min. 9.03 17.29 34.93 8.85 17.58 34.87 9.01 17.20 34.86 

Max. 21.08 32.50 51.62 25.64 28.10 49.96 17.96 29.78 47.20 

p < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Table 4: Summarised Results (Fitness F) for different values of d and n on Rastrigin function 

10 Dimensions 30 Dimensions 60 Dimensions 

n 50 100 200 50 100 200 50 100 200 

P
A

P
S

O
 Avg. 5.17 3.37 2.22 40.36 33.72 28.07 105.92 95.91 81.46 

Med. 4.97 2.98 1.99 40.30 33.83 27.36 104.47 95.52 81.59 

Std. 2.61 1.69 1.25 9.04 7.61 6.72 18.20 14.73 11.83 

Min. 0.00 0.00 0.00 17.91 16.91 11.94 62.68 61.69 49.75 

Max. 16.91 8.95 6.96 68.65 58.70 46.76 164.21 132.33 127.36 

P
S

P
S

O
 

Avg. 4.43 2.99 1.77 37.64 31.50 27.02 96.54 88.96 79.46 

Med. 3.98 2.98 1.99 35.82 31.34 27.36 96.51 87.56 79.10 

Std. 2.01 1.62 1.10 8.72 7.85 6.26 15.89 15.88 13.50 

Min. 0.99 0.00 0.00 12.93 12.93 9.95 53.74 44.77 44.77 

Max. 10.94 8.95 4.97 69.65 57.71 42.78 143.27 146.26 120.39 

p 0.0016 0.0222 0.0002 0.0023 0.0043 0.1067 < 0.0001 < 0.0001 0.1159 

Table 5: Summarised Results (Computing Time T) for different values of maximum waiting time tmax

tmax 5 10 50 100 250 500 1000 

P
A

P
S

O
 Avg. 1.79 2.76 3.58 5.49 12.69 23.21 43.44 

Med. 1.79 2.69 3.26 4.90 11.01 21.53 37.11 

Std. 0.10 0.73 1.36 2.30 5.78 10.79 21.61 

Min. 1.58 1.63 1.78 2.73 5.36 10.13 16.02 

Max. 2.11 4.50 7.46 12.52 31.33 55.92 118.80 

P
S

P
S

O
 

Avg. 18.15 18.03 20.38 23.25 31.95 48.29 75.31 

Med. 17.80 17.81 20.33 22.97 31.03 45.47 69.80 

Std. 0.75 0.63 1.61 2.70 5.76 12.98 22.86 

Min. 17.64 17.48 18.08 19.22 23.74 29.63 42.98 

Max. 20.35 21.89 26.42 33.07 52.73 98.13 144.60 

p < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Table 6: Summarised Results (Fitness F) for different values of maximum waiting time tmax 

tmax 5 10 50 100 250 500 1000 

P
A

P
S

O
 Avg. 33.28 32.60 31.35 30.22 34.67 34.95 37.33 

Med. 21.77 21.76 21.98 22.16 22.47 22.34 22.81 

Std. 29.71 28.25 23.99 24.35 26.63 28.36 28.14 

Min. 0.00 0.00 0.11 0.11 0.05 0.04 0.15 

Max. 90.14 91.96 88.09 107.86 88.63 140.59 138.36 

P
S

P
S

O
 

Avg. 36.42 36.70 34.65 33.96 35.13 32.61 32.59 

Med. 23.06 23.06 22.98 22.81 22.82 22.89 22.97 

Std. 26.15 27.60 27.69 26.84 26.45 27.35 24.83 

Min. 0.17 0.02 0.01 0.00 0.06 0.00 0.00 

Max. 106.46 87.18 152.92 142.30 99.55 195.20 89.60 

p 0.2626 0.1429 0.2035 0.1452 0.8625 0.4015 0.0748 
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The results achieved by the second set of experiments can 

be found in Table 5 and Table 6 and are summarised in 

Figure 4. In this figure, the average computing time is 

plotted over the maximum waiting time. It can be 

observed that for both algorithms the computing time 

increases linearly with increasing maximum waiting 

time. The R2 value of the linear regression is 0.999 for 

PSPSO and 0.9992 for PAPSO. Therefore, the average 

computing time rises linearly with the maximum waiting 

time for both algorithms. 

Figure 4: Average computing time per run for different 
maximum waiting times tmax 

CONCLUSIONS AND FUTURE WORK 

In this work, the efficiency (time) and effectivity (fitness) 

of two parallel variants of PSO have been evaluated, the 

synchronous PSPSO and the asynchronous PAPSO. Two 

well-known test functions, the Rosenbrock function and 

the Rastigin function, were applied. For each experiment, 

200 runs were carried out in order to analyse the results 

statistically.  

In a first set of simulations, versions of the test functions 

with 10, 30, and 60 dimensions, i.e. inputs, were used. 

The population size was increased for each 

dimensionality from 50 to 100 and finally 200 particles. 

The results of this set of experiments showed that both 

variants of PSO performed similar regarding to their 

effectiveness of finding the optimum solutions. The 

computing time used by PAPSO, on the other hand, is 

significantly smaller than the computing time needed by 

PSPSO. 

In a second set of simulations, the maximum waiting time 

was varied from 5 ms to 1,000 ms. Simulations were 

carried out on the Rosenbrock function only. In this set 

of experiments, the number of dimensions was set to30 

and the population size was set to 200. It was showed for 

both algorithms, that the average computing time rises 

linearly with the maximum waiting time.  

In conclusion, it can be said that for optimisation 

problems were the evaluation of a candidate solution 

depends heavily on the candidate solution itself, both 

algorithms achieve the same level of effectiveness, i.e. 

find similar good solutions. However, in terms of 

efficiency, PAPSO clearly outperforms PSPSO, i.e. uses 

less run time. 

In this research the performance of PAPSO and PSPSO 

was evaluated on two different test functions utilising a 

set of standard values for the three control parameters. 

The next step of this research, the performance of PAPSO 

and PSPSO will be evaluated on real world scenarios, for 

instance to optimise the candidate selection system of the 

PlasticObs+ system (Tholen and Wolf, 2023).  
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