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ABSTRACT
This study explores the optimization of two-stage object 
recognition systems, which are integral to numerous applica-
tions, by leveraging advanced machine learning techniques. 
While such systems, including Mask R-CNN, achieve high 
recognition accuracy, they are often hindered by over-pa-
rameterization, excessive computational demands, and sig-
nificant storagere quirements. To address these challenges, 
this research introduces a pruning method specifically de-
signed for complex architectures like Mask R-CNN, aimed 
at reducing computing time, simplifying model complexity, 
and optimizing storage, all while maintaining detection ac-
curacy.

The proposed method employs a Global Kernel Level Fil-
ter Pruning strategy, guided by the L1-Norm, to strategi-
cally remove non-essential parameters post-training. Ex-
perimental results demonstrate that this approach preserves 
recognition accuracy up to 50% pruning while achieving an 
11.6% improvement in computing time on Graphics Pro-
cessing Units and an 8% improvement on Central Process-
ing Units. Furthermore, the method achieves a compres-
sion ratio of 1.47, reducing memory requirements by 33.5%, 
without compromising Average Precision, which remained 
at 0.32, equal to the unpruned model at this level.

These findings provide valuable insights into the efficiency 
optimization of Neural Networks, offering a  practical and 
scalable solution for balancing accuracy, speed, and resource 
usage in complex architectures. This work contributes to 
advancing the state-of-the-art in Artificial Intelligence and 
opens new pathways for integrating complementary tech-
niques such as quantization for further enhancements.
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INTRODUCTION
Machine learning, driven by advanced computational power 
and Graphics Processing Units, has recently gained immense 
interest (Alpaydin 2016, (Shinde and Shah 2018), particu-
larly in natural language processing, predictive analytics, 
and image processing (Shinde and Shah 2018). A key fo-
cus is object recognition, crucial for applications like au-

tonomous vehicles (D. Feng et al. 2021). This technology’s 
significance is evident in both academic research and public 
discourse, highlighting its increasing impact on daily life.

However, a significant challenge within this domain is ad-
dressing the complexity and computational demands of two-
stage object recognition processes (Zou et al. 2019). These 
processes are characterized by high accuracy but suffer from 
issues such as over-parametrization (Canziani 2016), extended 
inference times (Chen et al. 2021), and substantial model 
storage requirements (Basili 2002). A notable gap in current 
research is the lack of insights regarding pruning strategies, 
specifically for complex, two-stage object recognition systems 
like Mask-RCNN, as evidenced by the scarcity of literature 
on this topic (Tzelepis et al. 2019, Aguiar Salvi and Barros 
2021).

The primary objective of this research is to improve comput-
ing time for two-stage object recognition systems through 
the design and implementation of a tailored pruning ap-
proach. While computing time, measured as the change in 
inference time, is the main focus, the method also aims to 
address over-parameterization (quantified by the compres-
sion ratio) and reduce model memory size (measured as the 
change in memory size in megabytes). This is achieved 
by strategically manipulating the model parameters post-
training to optimize performance across these metrics.

RELATED WORK
The research contributes primarily to Filter Pruning in 
the broader context of model compression. Scientific findings 
on model compression can be clustered into three categories:

Connection pruning
Connection pruning introduces sparsity in deep Neural 
Networks by eliminating redundant connections (Blalock et 
al. 2020), a vital aspect of model optimization. Pioneering 
techniques, such as those in (LeCun 1989) and (Hassibi 
and Stork 1992), used Taylor expansion for parameter 
significance assessment. However, these methods often 
require specialized hardware to leverage the resulting 
sparsity effectively. Recent advancements in connection 
pruning have focused on unstructured approaches, like the 
iterative pruning method in (Han 2016), which removes 
weights below a certain threshold. Although beneficial in 
fully connected
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layers, these methods do not typically lead to significant 
reductions in computational load in Convolutional Layers 
(Anwar 2017).

Filter pruning
This method involves evaluating the importance of each fil-
ter within the network and pruning accordingly, followed by 
a crucial retraining phase to recuperate any loss in accuracy 
(Li et al. 2017).

In determining filter i mportance, various m ethodologies are 
employed. For instance, (Abbasi-Asl and Yu 2017) assesses 
filter significance by  monitoring the impact of  its removal on 
the model’s accuracy. Similarly, (Li et al. 2017) utilizes the 
L1-Norm to determine filter importance, while ( Hu et al. 
2016) bases its evaluation on the activation of output 
Feature Maps from a subset of training data. These methods 
largely rely on hand-crafted heuristics.

Advancing beyond these, data-driven approaches for rank-
ing filters have been proposed. One such method, as seen in 
(Liu et al. 2017), involves Channel Level Pruning, where a 
learnable scaling factor is attached to each channel. This 
factor is governed by the L1-Norm during training. Group 
sparsity has also emerged as a promising direction for Filter 
Pruning, with works like employing group lasso for this pur-
pose (H. Zhou 2016, Wen et al. 2016). However, these tech-
niques sometimes necessitate specialized hardware to opti-
mize SpeedUp during inference (Anwar 2017).

Particularly relevant to the research are the approaches in 
(Molchanov et al. 2017), (Tzelepis et al. 2019) and (Singh 
et al. 2019), which, among other things, represents an inno-
vation in filter c lassification through the use of  absolute gra-
dient values. This methods have demonstrated competitive 
results compared to more traditional brute-force methods, 
such as checking loss deviation for each filter.

Quantization
Quantization complements the pruning methods by reducing 
the memory and computational demands of a network. It 
involves converting network weights into a lower bit config-
uration (Cosman et al. 1993). Techniques like binarization 
(Rastegari et al. 2016) and ternary quantization (H. Zhou 
2016) have been pivotal in this area. However, these meth-
ods sometimes necessitate special hardware for optimal im-
plementation (Gholami et al. 2015). The combination of 
pruning and quantization, as seen in (Huang et al. 2017), 
highlights the potential for achieving significant model com-
pression while maintaining performance.

RESEARCH METHODOLOGY
The methodology follows the Design Science Research ap-
proach (Peffers et al. 2007), which i s known for i ts iterative 
nature, to experimentally evaluate the proposed compres-
sion method on various modern Neural Network architec-
tures. This process is focused on the goal of optimizing 
compression, memory requirements and inference time for 
networks of different depths and widths in different domains. 
The project was divided into two distinct iterations, each of 
which produced a prototype that embodied the dynamic and 
adaptive progression that characterizes Design Science Re-
search. The iterative process facilitates the refinement of

the compression technique and allows to respond effectively 
to the insights gained at each stage.

Dataset and Algorithm
The widely used Microsoft COCO dataset (Lin et al. 2014) 
was selected for image classification and segmentation. The 
full scope of the subdataset train (80k images) (Lin et al. 
2014) and subdataset validate (35k images) (Lin et al. 2014) 
are applied to the Mask R-CNN algorithm. Mask R-CNN is 
based on a Resnet50 backbone and is already pre-trained 
(Facebook 2020). The pruning is applied post-training. Re-
cognition accuracy and computing time are measured using 
the minival sub-dataset (5k images) (Lin et al. 2014).

All implementations of the compression method are exe-
cuted in PyTorch and CUDA, ensuring high performance 
and compatibility with modern graphics hardware. The in-
ference time is tested on both graphics and central process-
ing hardware to evaluate performance across diverse sys-
tems. Specifically, testing on the graphics hardware was con-
ducted using the Nvidia H100 NVL, with a maximum 
memory capacity of 93 GB, while central processing hard-
ware testing was performed on an Apple M1 chip with 16 
GB of unified memory. Furthermore, to foster reproducibility 
and community engagement, the implementations are 
publicly available via GitLab.

Evaluation
The evaluation primarily focuses on computing time, with 
inference time serving as the key metric. Inference time is 
measured under consistent and controlled conditions, timing 
the model’s forward pass during inference on both graphics 
and central processing hardware.

Additionally, the compression ratio is calculated, which is a 
direct measure of the reduction in network size:

compression ratio =
base model size

pruned model size

Finally, the model’s detection performance is evaluated us-
ing Average Precision for Intersection over Union thresholds 
≥ 0.5. For the remainder of this paper, Average Precision 
refers to Average Precision computed at Intersection over 
Union 0.5. This metric is used to validate that the pruning 
method preserves detection accuracy.

These metrics are critical in gauging the trade-off between 
model efficiency and performance, ensuring that the com-
pression method achieves the optimal balance for practical 
deployment.

EXPERIMENTS
Filter Pruning at Channel Level
Approach
The initial approach involved systematically deactivating fil-
ters by nullifying channels. This was based on the calcula-
tion of the L0-Norm for each channel, which counts non-zero 
values and returns the result (M. Feng et al. 2013). Channels 
were then sorted ascendingly based on their L0-Norm, and
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a predetermined percentage of the least important channels
were pruned.

Referring to Table 1, the results demonstrate that the prun-
ing approach becomes ineffective for pruning proportions
exceeding 10%, as the Average Precision (AP) drops to 0.
While pruning leads to a reduction in inference time for both
the Graphics Processing Unit (GPU) and the Central Pro-
cessing Unit (CPU), the loss in detection accuracy outweighs
the computational benefits. This sharp decline underscores
the limitations of the current pruning strategy, suggesting it
is unsuitable for practical deployment.

The failure of the method is likely due to the collapse of out-
put feature maps, where essential information required for
accurate detection is eliminated during the pruning process.

Table 1: Filter Pruning at Channel Level

Base Model Pruning
Propor-
tion [%]

Inference
Time
on
GPU
[ms]

Inference
Time
on
CPU
[ms]

AP

Mask R-CNN 0 22.80 2128.03 0.31
Mask R-CNN 10 27.36 2236.58 0.18
Mask R-CNN 20 24.47 2165.98 0.03
Mask R-CNN 30 16.30 1963.02 0.00
Mask R-CNN 40 13.28 1837.71 0.00
Mask R-CNN 50 13.28 1801.18 0.00
Mask R-CNN 60 13.33 1836.08 0.00
Mask R-CNN 70 13.21 1746.75 0.00
Mask R-CNN 80 13.06 1793.32 0.00

The findings highlight the inadequacy of this pruning ap-
proach for complex architectures, as the severe reduction 
in Average Precision negates the benefits of reduced model 
size and computational efficiency. These results emphasize 
the need for alternative pruning strategies that can achieve 
model compression while preserving detection accuracy.

Filter Pruning on Global Kernel Level
Deficit analysis
The rapid decline in recognition accuracy was attributed 
to the collapse of subsequent layers caused by structured 
Filter Pruning at the Channel Level. It was clear that the 
method should not completely nullify the Feature Maps of 
filter outputs, essential for subsequent calculations.

Approach
The second iteration involved atomic-level manipulation. Si-
miliar to the researches by (Li et al. 2017) and (Kumar et al. 
2021), every parameter within the convolution kernels was 
considered for pruning, with the least important parameters 
identified using the L1-Norm method, which calculates the 
sum of vector sizes (Kumar et al. 2021). This allowed for a 
more nuanced pruning approach where fewer values might 
be pruned in some kernels compared to others.

Results

The pruning approach demonstrated improved computational 
efficiency, particularly in terms of inference time, with some 
trade-offs in detection accuracy as reflected in Average Pre-
cision (AP). Table 2 provides a comprehensive overview of 
these results.

The inference time on the Graphics Processing Unit showed 
a consistent reduction as pruning proportions increased. At 
50% pruning, the inference time decreased from 22.8 mil-
liseconds for the base model to 20.15 milliseconds, represent-
ing an 11.6% improvement in computational efficiency. The 
reduction continued with further pruning, reaching 17.31 
milliseconds at 80% pruning, marking a total 24.1% im-
provement compared to the base model. Similarly, the in-
ference time on the Central Processing Unit exhibited mi-
nor improvements. At 50% pruning, the inference time 
decreased from 2128.03 milliseconds for the base model to 
1958.89 milliseconds, yielding an 8.0% improvement. Fur-
ther pruning resulted in a consistent reduction, with the 
inference time reaching 1830.48 milliseconds at 80% prun-
ing, amounting to a total 14.0% improvement compared to 
the base model.

For the Central Processing Unit, a similar trend was ob-
served, though the reductions were less pronounced. At 
50% pruning, the inference time decreased from 2731 mil-
liseconds to 2428 milliseconds, corresponding to an 11.1%
improvement. At 80% pruning, the inference time further 
decreased to 2386 milliseconds, resulting in a total 12.6%
improvement compared to the base model.

The detection accuracy, as measured by Average Precision 
(AP), remained stable up to 50% pruning, maintaining val-
ues between 0.31 and 0.34. Beyond this point, the Average 
Precision began to decline significantly, dropping to 0.22 at 
60% pruning and experiencing a sharp fall to 0.05 at 70%
pruning. At 80% pruning, the Average Precision reached 
0.00, indicating a complete loss of detection capability. This 
decline suggests that high pruning rates lead to a collapse 
of individual filter kernels, disrupting subsequent computa-
tions and feature map generation.

Table 2: Filter Pruning on Global Kernel Level

Base Model Pruning
Propor-
tion [%]

Inference
Time
on
GPU
[ms]

Inference
Time
on
CPU
[ms]

AP

Mask R-CNN 0 22.80 2128.03 0.31
Mask R-CNN 10 22.74 2263.18 0.31
Mask R-CNN 20 23.67 2263.18 0.31
Mask R-CNN 30 24.10 1982.79 0.34
Mask R-CNN 40 21.73 2103.54 0.33
Mask R-CNN 50 20.15 1958.89 0.32
Mask R-CNN 60 19.97 1873.57 0.22
Mask R-CNN 70 18.45 1853.44 0.05
Mask R-CNN 80 17.31 1830.48 0.00

Filter pruning at the channel level proved to be ineffective.
The collapse of filters resulted in unusable detections, ren-
dering a comparison of computing time irrelevant. In con-
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trast, the proposed approach, filter pruning on the global 
kernel level, demonstrated its effectiveness by maintaining 
consistent detection accuracy at a pruning rate of 50% of all 
parameters in the convolutional layers, along with a 11.6%
improvement in computing time.

Furthermore, the base model requires 179 megabytes of mem-
ory, while the pruned model reduces this requirement to 
119 megabytes. This corresponds to a 33.5% reduction in 
memory usage, making the pruned model significantly more 
efficient in terms of storage while preserving detection per-
formance.

CONCLUSION
Objective
The study embarked on addressing a critical issue in the 
realm of Neural Networks, particularly focusing on the com-
plexity and efficiency of two-stage object recognition meth-
ods like Mask R-CNN. The challenge lays in reducing com-
puting time, over-parametrization and decreasing model 
storage size without compromising the high recognition 
accuracy inherent to these methods. The existing corpus of 
literature demonstrates a conspicuous paucity of insights 
into the application of pruning techniques within the ambit 
of intricate, two-stage object recognition frameworks. This 
research endeavor specifically targets this lacuna, with a 
focus on elucidating the implications of such techniques 
when applied to the Mask R-CNN architecture. The 
objective is to enrich the academic discourse by 
providing a comprehensive analysis of pruning strategies in 
complex Neural Networks, thereby bridging the identified 
knowledge gap.

Results
The research introduced a novel concept of Filter Pruning at 
the Global Kernel Level. This approach strategically identi-
fies and eliminates the least significant parameters within 
the convolutional kernels of Mask R-CNN using the L1-
Norm. This method represents a significant advancement 
in network optimization, effectively reducing the network’s 
complexity and computational time while preserving the 
crucial accuracy required for object recognition tasks. The 
findings highlight the potential of precise, kernel-focused 
pruning as a powerful strategy to enhance the efficiency of 
complex Convolutional Neural Network architectures.

Key results of this study include maintaining high recogni-
tion accuracy up to 50% pruning, achieving an 11.6% im-
provement in computational time on the Graphics Process-
ing Unit and an 8% improvement on the Central Processing 
Unit, while delivering a total compression ratio of 1.47. At 
this pruning level, the Average Precision remained at 0.32, 
equivalent to that of the unpruned model, demonstrating the 
effectiveness of this approach in preserving detection perfor-
mance.

Implications
This study provides key insights for optimizing Neural Net-
works, introducing a post-training compression technique for 
Mask R-CNN that enhances algorithm refinement and effi-
ciency. The findings reveal that pruning Feature Map out-
put channels offers limited benefits, whereas fine-tuning fil-
ter kernels at a granular level is more effective and adaptable

for similar two-stage recognition methods. This approach 
not only reduces computing time, model size and complex-
ity but also maintains high recognition accuracy, ensuring 
its practicality for real-world applications.

Furthermore, the proposed Filter Pruning strategy signifi-
cantly enhances the model’s suitability for complementary 
compression techniques, particularly quantization. By elim-
inating redundant parameters and structuring the model 
more efficiently, this method opens the door to  substantial 
improvements in computing time when combined with 
quantization. Together, these methods create a synergistic 
pathway for optimizing resource usage while maintaining de-
tection performance, making this approach highly relevant 
for deployment in resource-constrained environments, such 
as edge devices and real-time systems.

FUTURE WORK
The field of object recognition, especially with complex ar-
chitectures like Mask R-CNN, is on a trajectory of contin-
uous evolution and expansion. This growth trajectory un-
derscores the pressing need for effective compression meth-
ods that can adeptly manage the intricacy and expansive-
ness of these systems. As the utilization of object recogni-
tion methodologies escalates, it’s anticipated that the signif-
icance of algorithms such as Mask R-CNN will correspond-
ingly rise, marking a pivotal juncture in the field’s advance-
ment.

Future research in this domain is poised to traverse several 
critical paths. Firstly, there is a compelling need to pioneer 
new compression approaches. These novel strategies should 
ideally harness the latest developments in machine learn-
ing and Artificial Intelligence, specifically tailored to address 
the unique challenges posed by intricate Neural Network ar-
chitectures. The creation of these innovative methods is 
paramount to keeping pace with the escalating complexity 
and capabilities of these systems.

Furthermore, there is a significant opportunity to refine and 
optimize existing compression procedures. This optimiza-
tion could focus on multiple fronts, including enhancing ef-
ficiency, minimizing computational demands, and striking a 
more effective balance between model size, processing speed, 
and accuracy. Fine-tuning these elements is crucial to en-
sure that compression techniques maintain their relevance 
and efficacy, especially as  technology rapidly advances and 
network architectures grow increasingly complex.

Another vital area of focus is the application of compres-
sion techniques to a diverse array of algorithms within ob-
ject detection. Moving beyond Mask R-CNN, this research 
would extend the reach and applicability of these compres-
sion methods, making them useful across a broader spec-
trum of object detection applications. By encompassing 
a variety of algorithms, this research endeavor can signifi-
cantly contribute to the overall functionality and utility of 
object detectors.

Finally, this work demonstrates that pruning not only re-
duces over-parameterization but also prepares the model for 
quantization, a complementary compression technique with 
significant potential for further reducing memory and com-
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putational requirements. By removing redundant parame-
ters through pruning, the model structure becomes better 
suited for lower-precision quantization, enabling even more 
substantial gains in efficiency. Future studies should explore 
the combined impact of pruning and quantization, particu-
larly in resource-constrained environments such as edge de-
vices, where lightweight models are paramount.
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