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ABSTRACT
Product quality is a crucial factor of customer satisfaction
and thus directly influences the competitiveness of a com-
pany. In manufacturing companies the quality of production
processes obviously has significant impact on product qua-
lity. Therefore, establishing automated quality control of-
fers considerable leverage for improving processes without
necessarily increasing work efforts and costs. In this paper
an artificial intelligence based pattern recognition method
for increasing the output of an anodising process for alu-
minium parts is discussed. In the use case presented here,
customers have high aesthetic requirements regarding the
products which are used in an expensive market segment
with only limited fault tolerance. Preparation of the pro-
duct parts before going through the anodising process is a
manual, tedious, and error-prone task that nevertheless re-
quires highest precision. Small deviations can lead to quali-
ty problems causing rejections and enforcing repetitions in
production. We discuss the application of visual image pro-
cessing with an artificial intelligence algorithm integrated
into the information system of the company to monitor the
process and prevent human errors. Results show that our
approach reaches high accuracy and can potentially impro-
ve delivery reliability with respect to time and quantity by
reducing cost-intensive manufacturing errors.

1. PROBLEM DESCRIPTION
Efficiency of processes and quality of products play a decisi-
ve role in running economically successful industrial produc-
tion. Therefore, product quality assurance (QA) is becoming
an increasingly important element of the value chain. Seidel
GmbH & Co. KG in Marburg is a leading producer of pa-
ckaging material for cosmetic brands and components for
aluminium products. Aluminium foliage is formed coldly in
progressive a press and then receives surface treatment in
an anodising process.

Before entering the anodising process aluminium parts are
placed on racks. Each rack has a capacity of up to 300 parts,
depending on the product and the process configuration.
Racks are put on carriers which are then moved automati-

cally into the anodising plant. The electrochemical anodising
process covers the raw aluminium parts with a layer of alu-
minium oxide. Colours and varying product appearances can
be created.

Furthermore, the aluminium part receives a calloused, scratch-
resistant high-quality surface. This complicated process re-
quires product carriers to be loaded strictly according to
defined patterns. Due to their size and shape, different alu-
minium parts require a careful setup of this process.

Depending on the item in production in a given batch, dif-
ferent plug patterns are used to load the product carriers. A
plug pattern defines how racks loaded with products have to
be placed on the carrier. A product carrier can hold 28 racks
(14 on each side of the product carrier), resulting in several
million possible combinations for the arrangement of racks
on the product carrier. However, only a few plug patterns
are feasible in the anodising process and have proven to lead
to good results. Fig. 1 shows an example of such a product
carrier.

Figure 1: Schematic representation of a loaded pro-
duct carrier. The round balls symbolise products on
a rack which, due to their arrangement in the slots
represented by the rectangles, result in the plug pat-
tern on the rack.

Loading product carriers is a manual task in which time
pressure and the complexity of the task lead to errors. A
typical error is misplacing racks so that the loaded product
carrier does not match the pattern required for that parti-
cular product. Such a pattern mismatch in the feed of the
anodising plant leads to low output quality, so the complete
batch has to be rejected. In this case, this batch has to be
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reproduced incurring additional costs and finally shipping
delays.

Therefore, the use of artificial intelligence methods to mo-
nitor the loading process of the anodising plant was ana-
lysed. Image recognition with a Deep Learning algorithm
was implemented to interfere and stop the process in case of
loading errors. An independent functional unit (in the fol-
lowing called QA-Engine) was developed, which compares
patterns detected in images of the product carrier to pat-
terns that are defined in the master data of the enterprise
resource planning system (ERP system). In this paper, we
describe the proof of concept for the use of the QA-Engine.
We first discuss related work and then present our metho-
dology. The results achieved are then presented. The paper
concludes with a look at future work in general and the spe-
cific use case presented here.

2. RELATED WORK
In recent years, machine learning methods have been used in
many different environments and their fields of application
have already been extensively illuminated. Quality control,
especially process control, has also been investigated to a
certain extent.

One area that has been considered is recognition of patterns
such as shifts, trends and cycles in quality control charts
with the goal to minimise deviations by identifying the cause
and adjusting the process accordingly. Guh and Shiue [Guh
and Shiue, 2005] showed that decision trees can be used to
identify patterns in control charts. Wang et al. [Wang et al.,
2018] also managed to use decision trees to identify anoma-
lies. Gauri and Chakraborty [Gauri and Chakraborty, 2007]
successfully trained a neural network to identify features in
control charts.

Other studies aimed at determining whether machine lear-
ning can be used to classify processes with or without con-
trol. Smith [Smith, 1994] used a neural network for X bar R
charts to determine whether a process is out of control. For
detecting significant shifts in mean values, the researchers
were able to achieve equally good results with neural net-
works as with regular control limits. For small shifts, howe-
ver, neural networks exceeded conventional control limits.
Shao and Chiu [Shao and Chiu, 1999] trained a neural net-
work to identify different assignable causes in an attempt
to integrate statistical process control with feedback control
for a set of parameters.

Pacella and Semeraro [Pacella and Semeraro, 2007] point out
the problem that many quality characteristics correlate and
use a neural network to monitor the quality of autocorrela-
ted process data. Low et al. [Low et al., 2003] also consider
autocorrelated data, but focus specifically on detecting va-
riations of variance.

Machine learning has also been used to identify anomalies in
surface textures ([Weimer et al., 2016]; [Wang et al., 2018]).
Methods of image recognition to identify anomalies on texti-
le textures were also investigated ([Ngan et al., 2011]; [Sajid,
2012]).

Plastic injection moulding was also investigated, using va-
rious parameters from production as input ([Ribeiro, 2005];
[Tellaeche and Arana, 2013]). Zhao et al. [Zhao et al., 2017]
describe an automatic image recognition approach for qua-
lity assurance for cold rolling processes. Villalba-Diez et al.
[Villalba-Diez et al., 2019] have applied machine learning
in the printing industry. The researchers show how a neural
network can be combined with a high-resolution optical qua-
lity control camera to increase product quality and redu-
ce costs in the printing industry. Ferguson et al. [Ferguson
et al., 2018] on the other hand, demonstrate the use of neural
networks to identify casting defects in X-ray images.

The fast-food chain Domino’s Pizza is also using machine
learning to monitor the quality of its pizzas. In 2019, the
company introduced a scanning technology in its kitchens
in Australia that uses machine learning to analyse images of
pizzas. According to Domino’s, it has succeeded in increasing
the quality of the pizzas monitored in this way by fifteen
per cent ([Dominos, 2019]). The US company eBay Inc. also
relies on machine learning for quality assurance. eBay uses
a neural network to classify whether a UX component meets
the desired quality criteria or not (see [Sharan et al., 2018]).

3. METHODOLOGY
For error detection, we use a convolutional neural network
(CNN) architecture. In this section we will at first provide
some theoretical background about CNNs in 3.1 and then
briefly describe our our database structure in 3.2.

3.1 Convolutional neural networks
CNNs ([LeCun et al., 1989]) represent a special variant of ar-
tificial neural networks (ANN). Due to their structure, they
are particularly well suited for image recognition and are
preferably used for the classification of images and videos (
[Schwaiger and Steinwendner, 2019]). The CNN model was
inspired by the mechanisms of the visual cortex of the brain.
A significant difference to conventional ANNs is that CNNs
apply filters and create feature maps to detect patterns and
structures in images. These can be contours, colours or tex-
tures, which are then combined into more complex struc-
tures.

Architecturally, the structure of CNNs shows specific dif-
ferences compared to conventional ANNs. The input layer
usually takes three-dimensional input in the form of the spa-
tial extension of the image (width * height) and has a depth
representing the colour channels (usually three for the RGB
colour channels). This is followed by convolution layers and
pooling layers, explained below. These two types of layers
can be repeated with tailored parameterisation. Typically,
a classification layer is used as output layer, represented by
a fully linked layer for generating the scores. A high-level
general CNN architecture is shown in Fig. 2.

• Input: The CNN input is usually the 3-channel colour
image or 1-channel grey image matrices, containing the
intensity values at each position.

• Conv: The core of a CNN is the convolutional layer.
This layer performs the mathematical operation called
convolution. Convolution is a special kind of linear ope-
ration. CNNs are thus ordinary neural networks that
use convolution instead of general matrix multiplica-
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Figure 2: General CNN architecture

tion in at least one of their layers ([Goodfellow et al.,
2016]).
During convolution, the size of the filter (kernel size)
(e.g. 3 x 3) is defined first. Then the filter scans the
pixel matrix of the input like a window with a constant
step size. The filters move from left to right across the
input matrix and jump to the next lower row after each
pass. The so-called padding determines how the filter
should behave when it hits the edge of the matrix. The
filter has a fixed weight for each point in its viewport,
and it calculates a result matrix from the pixel values
in the current viewport and these weights. The result
of the convolution is called a feature map in the ter-
minology of CNNs. The size of this resulting matrix
depends on the kernel size of the filter, the padding
and especially on the step size. A non-linear activati-
on function is used for the feature map. For modern
CNNs, the default activation function is the rectified
linear activation function (ReLu).

• Pooling: The pooling layer leads to a reduced spati-
al dimension by using the pooling function according
to Zhou and Chellappa [Zhou and Chellappa, 1988].
It aims to reduce the amount of network parameters
and the calculation costs. The pooling layer is often
placed between two successive convolution layers. Dif-
ferent aggregation functions can be used for pooling.
The most common aggregation functions are max poo-
ling and average pooling ([Lin et al., 2013]).

• Dense: The Fully Connected Layer or Dense Layer is a
standard neural network structure in which all neurons
are connected to all inputs and all outputs. Moreover,
the last fully connected layer produces the output of
the entire net. Each value of the k-dimensional output
represents the probability of the corresponding label
using the softmax function.

Combined, these layers provide a complete CNN into which
input can now be fed for network decision-making.

3.2 Dataset
Images taken in the anodising plant serve as the data ba-
sis for the QA-Engine. For this reason, a system for image

acquisition was integrated into the anodising process, which
records the pattern set by the employees. The system uses
an RPI3-CM01 camera to take images of the product carrier
with the racks at the start of the anodising process. Such an
image is shown in Fig. 3.

Figure 3: Example of an image taken in the anodi-
sing plant

After the product carrier has been completely loaded with
the racks by the machine operators, it is automatically mo-
ved through the anodising system. While the product carrier
is moving through the anodising plant to the preprocessing,
an image is taken automatically triggered by an ultrasonic
sensor of the type HC-SR04. Thus, images are always ta-
ken at the same point and all have identical distance from
the camera. Additional information of the current order is
required to evaluate the pattern. For each new order, infor-
mation is captured by the ERP system and stored together
with the information which plug pattern is used for the or-
der. The information describing the orders is delivered via
an API from the ERP system. In preparation for our ex-
periments more than 20000 images were reviewed with low-
quality images eliminated. The remaining rest was labelled
with a plug pattern resulting in a data set of 1000 labelled
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images (elox seidel 1k). When creating the data set, care
was taken to ensure that the distribution of images per plug
pattern was balanced. This data set is used for the trai-
ning of the CNN and for all experiments carried out. The
elox seidel 1k dataset was then further processed to be suita-
ble for the training of the CNN. The QA-Engine responsible
for data preparation reads the data set and processes the
data.

In these and further steps, an X-data set and a Y-data set
are created, representing input and target values. The X-
data set consists of an array of the form (1000, 256, 320, 3).
The first value represents the number of image instances.
The second and third values are the dimensions of the image.
The fourth value represents the three colour channels of the
image (RGB). The Y-data set corresponds to the form (1000,
10), whereby the first value also represents the number of
image instances. The second value specifies the plug pattern
class in an one-hot-encoding. Finally, the image instances
are divided into training, validation and test data set. The
data records can now be used to train and validate the CNN.

4. QA-ENGINE
In this section, the architecture of the QA-Engine is descri-
bed, and the CNN implementation is discussed.

4.1 The QA-Engine in the anodising plant
The architecture of the QA-Engine was developed so that
it can be combined with the existing components of Seidel
GmbH & Co. KG and can easily be integrated into the sys-
tem landscape of Seidel. See Fig. 4 for an overview of that
landscape.

Figure 4: Integration of the QA-Engine into the Sei-
del environment

The architecture is designed to support the quality assuran-
ce process in the anodising plant in the best possible way.
Initially an image of the product carrier with the racks is
taken in the anodising plant. This image is then forwarded

to a control system in the anodising process [1]. The plant
control system asks the ERP system for the order currently
in the anodising plant [2]. The recorded image, together with
the current order from the ERP system, is sent by the plant
control system to the QA-Engine [3]. The QA-Engine ana-
lyses the data and returns an assessment of the plug pattern
to the plant control system [5]. It is also planned that the
QA-Engine will store generated assessments in a database
for potential further evaluation in the future. [4]. The results
database created by the QA-Engine is forwarded by the sys-
tem control if required. If the QA-Engine detects an error in
the plug pattern, the result is forwarded to the system ope-
rator [6]. It is subjected to a human who can, if necessary,
intervene in the anodising process. In terms of a fully auto-
mated production, the result of the QA-Engine can also be
forwarded directly from the system control to the machine
in the anodising plant. As a result, the machine interrupts
the process and the plug pattern can be corrected. The fully
implemented QA-Engine was provided as a docker image in
a private Seidel registry [7].

Communication with the QA-Engine is done via a represen-
tational state transfer application programming interface.
This enables interaction with the system using hypertext
transfer protocol requests. The system control of the anodi-
sing plant sends a request to the QA-Engine and receives a
response from the QA-Engine. Various endpoints have been
implemented for communication with the QA-Engine API.
Among other things, the images can be sent to the engine
and hyperparameters can be requested and adjusted.

4.2 Model Implementation
The main component of the QA-Engine for quality assurance
is a CNN. Based on the pictures taken, the CNN recognises
the plug pattern depicted in the anodising plant. This way
classification of the images and thus of the plug patterns is
to be carried out. One class represents one plug pattern in
the anodising process. The CNN was implemented in the
programming language Python (version 3.6) (cf. [van Ros-
sum and Drake Jr, 1995]). TensorFlow (Version 1.9) ([Aba-
di et al., 2016]) was used for this purpose. TensorFlow is
an open-source program library for machine learning. Ten-
sorFlow combines the computational algebra of compilation
optimisation techniques and thus facilitates the calculation
of many mathematical expressions. Time-consuming calcu-
lations can thus be processed much faster ([Zaccone, 2016]).
Keras ([Chollet, François, 2015]), an interface for Tensor-
Flow, was also used for training and validation of the model.

Different architectures were implemented and assessed to
determine the network architecture most suitable for the
problem. Based on the results of the comparison, the archi-
tecture shown in Fig. 5 was selected. As shown in Fig. 5, the
network consists of nine layers with weights; the first three
are folded and the remaining six are for regulation, as well as
fully connected. The output of the final fully connected lay-
er is fed into a 10-way softmax, which creates a distribution
over the ten class labels.

The first convolution layer filters the 256x320x3 input image
with 32 filters with a 5x5 window and a stride of one pixel.
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Figure 5: Visualisation of a schematic representation
of the architecture of the QA-Engine.

The second convolutional layer takes the output of the first
convolutional layer as input and also applies 32 filters with a
5x5 window. The two layers are followed by a pooling layer
with a window size of 6x6. Padding is not used in either
layer.

There is a flatten layer between the convolutional and the
fully connected layer. Flattening converts the two-dimensional
matrix of features into a vector for processing by the sub-
sequent fully connected layers. The fully connected layers
consist of 128 neurons. To prevent the CNN from overfit-
ting, dropout was used. The softmax function underlying
the final dense layer transforms the transferred values. The
output of the softmax function corresponds to a categorical
probability distribution and thus indicates a probability of
belonging to a plug pattern.

4.3 Further experiments
Furthermore, the influence of contrast, brightness and sharpness
on the CNN used was investigated. On the one hand, this
makes it possible to determine whether an adjustment of
contrast, brightness and sharpness during the preprocessing
of the images possibly leads to better results. On the other
hand, the robustness of the network for the factors will be
investigated.

For this experiment, the preprocessing was adapted and the
network was then trained and tested, using the previously
described dataset. Contrast, brightness, and sharpness was
manipulated for each of the 1000 images (800 training, 100
and 100 test). Subsequently, the CNN was trained. Nine trai-

ning and test runs were performed for each factor, each with
different value assignments. In addition, the vulnerability of
the CNN of the QA-Engine was tested under poor conditi-
ons. For example, dust or other impurities may collect on
the camera lens when used in the anodising plant. Also,
lamps in the production hall may fail temporarily. These
and other situations lead to different conditions when the
image is captured. Therefore, it was investigated how well
the mesh performs with changes in contrast, brightness and
sharpness. Therefore, 100 images were randomly taken for
this purpose and deliberately manipulated. They were then
given to the CNN of the QA-Engine for assessment.

Figure 6: Example image taken with the line scan
camera

The possibility of generating patterns dynamically at run-
time was also investigated to react more flexibly to the in-
troduction of new patterns. For this purpose, the recorded
images were divided into individual quadrants, which were
checked separately for a loaded or unloaded slot. A modified
test setup using a line scan camera was used for this purpose.
The line scan camera is triggered by a incremental encoder
when the product carrier is moved into the anodising system.
An example of a recorded image is shown in Fig. 6. Since
this is an experimental setup, only the central area of the
container was recorded. 14 quadrants were defined on the
image, which were checked for an existing rack. At runtime,
the plug pattern can be dynamically generated depending
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on whether a rack with aluminium parts needs to be on the
quadrant or not. A modified version of the CNN described
above was trained to recognise and distinguish between exis-
ting and non-existing racks. The network has an accuracy
of 98,99%, but the static definition of the quadrants proves
to be error-prone in the case of shifted images. Since a fi-
ne adjustment of the encoder can solve this problem, this
approach will be further investigated in the future.

5. RESULTS
The CNN we created was trained using the previously de-
scribed data set. Our model was trained on a NVIDIA Ge-
Force GTX 1080Ti 11 GB. 10-fold cross validation was used.
The network has an accuracy of 98.09%. The results show
that our model can recognise plug patterns and differentiate
between plug patterns.

During the experiments, it was found that varying contrast,
brightness, and sharpness in preprocessing did not positively
affect the predictive ability of the CNN. Tendentially, an ex-
treme adjustment of these variables led to worse results. Fur-
ther investigations showed that the CNN of the QA-Engine
is not very resistant to changes in brightness and contrast.
Among other things, the predictive ability deteriorates si-
gnificantly when brightness is lowered. Changes in image
sharpness, on the other hand, are harmless.

6. CONCLUSION AND FUTURE WORK
In this work, we have described the prototypical develop-
ment of a system for quality assurance. The system was
developed for use in the anodising process of the company
Seidel GmbH & Co. KG to monitor this process automati-
cally. Thereby, images of product carriers containing racks
with production goods arranged in a plug pattern are au-
tomatically recorded. These serve as input for the system.
The current order from the ERP system is also transferred
to the QA-Engine. The image is recognised and classified
using a previously trained artificial neural network. For this
purpose, the image with the product carrier is assigned to
a pattern. The plug pattern classified by CNN is compared
with the intended plug pattern from the ERP system. In
case of an incorrect plug pattern, the system gives feedback.
Errors occurring in the anodising can be detected early thus
reducing quality assurance costs.

Currently a fully usable prototype is available which can be
integrated into the infrastructure with container virtualisa-
tion. Further tests are required and camera technology will
be consolidated.

The prototype created in this work has a potential high long
term impact to significantly improve the anodising process.
Additionally, the prototype is considered to have the poten-
tial to be transferred to other use cases, e.g. high precision
determination of the loss of products. Individual aluminium
parts tend to detach from the racks at odd times and remain
in the anodising plant. The QA-Engine can be extended to
count the aluminium parts on the individual racks. In this
case, images would have to be taken at start and end of
the anodising process which could then be used to compare
counts giving the exact loss of products. However, this use
case could not yet be implemented as camera technology
with sufficient precision was not available. Later versions of

the QA-Engine can implement a higher degree of automa-
tion by independently interrupting processes and initiating
reloading of the carriers.

In conclusion, with implementing the QA-Engine for quality
assurance Seidel GmbH & Co. KG has made a step towards
fully automated and monitored production processes.
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