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ABSTRACT 

At present, evolutionary optimization algorithms are 

increasingly used in the development of new 

technological processes. Evolutionary algorithms often 

allow the optimization procedure to be performed even in 

cases where classical optimization algorithms fail (e.g. 

gradient methods) and where an acceptable solution is 

sufficient to solve the optimization task. The article 

focuses on possibilities of using a differential evolution 

algorithm in the optimization process. This algorithm is 

often referred to in the literature as a global optimization 

procedure. However, we show by means of a practical 

example that the convergence of the classic differential 

algorithm to the global extreme is not generally assured 

and is largely dependent on the specific cost function. To 

remove this weakness, we designed a modified version 

of the differential evolution algorithm. The improved 

version, named the modified differential evolution 

algorithm, is described in the article. It is possible to 

prove asymptotic convergence to the global minimum of 

the cost function for the modified version of the 

algorithm. 

 
INTRODUCTION 

New technological procedures are often developed using 

mathematical models describing the essential features of 

the solved problem. The model is then used to transform 

the real world problem into an optimization task. Strong 

assumptions are often required when using classic 

optimization methods (e.g. convexity of the searched 

space, convexity of the evaluation function, knowledge 

of the appropriate position of the initial solution). 

Otherwise, these methods do not often lead to the 

required solution. 

Evolutionary optimization algorithms are primarily 

utilized in situations when other usual methods fail to 

converge to the optimized state. Recently, use of the 

evolutionary optimization algorithms has been 

considerably expanding, see e.g. (Simon 2013), 

(Affenzeller et al. 2009)). The evolutionary algorithms are 

in particular appropriate for problems with a complicated 

structure of the search space and in case of intricate cost 

functions. Evolutionary algorithms are in general more 

computationally demanding and they are therefore 

suitable for calculations that are not time limited (e.g. off-

line calculations of trajectories of an industrial robot, see 

(Mlýnek et al. 2020)). Their use in time critical 

calculations is rather limited. For example, their 

utilization for online decision making processes (e.g. 

online calculations of trajectories of industrial robot 

depending on the evaluation of current conditions) is not 

so frequent. Nevertheless, parallel programming tools are 

often used to speed up calculations with good results. 

Nowadays, parallel programming tools form a part of 

most used programming languages. 

The differential evolution algorithm is one of the 

frequently used algorithms for solving practical 

optimization tasks. This algorithm was first introduced 

by Storn and Price in (Storn and Price 1997) and (Price 

et al. 2005). This algorithm is often referred to as a global 

optimization method (see (Storn and Price 1997), (Price 

1996)). However, such statements are always justified. 

We demonstrate by an example of a specific cost function 

that this algorithm is prone to premature local 

convergence and its convergence to the minimum of the 

cost function is not assured. The issue of suitable choice 

of optional algorithm parameters is solved, for example, 

in (Červenka and Boudná 2018). In this article we 

propose a suitable modification of the differential 

evolution algorithm that eliminates the premature 

convergence to a local minimum. Additionally, it is 

possible to prove asymptotic convergence to the global 

minimum of the cost function. 

The differential evolution algorithms now constitute a 

larger group of similar algorithms that differ in 

implementation details. We concentrate on the standard 

DE/rand/1/bin algorithm which is best known and mostly 

used. That is why it is termed as the classic differential 

evolution algorithm in (Price at al. 2005). Hereafter it is 

referenced to as CDEA. The new proposed modification 

of CDEA is termed to as the modified differential 

algorithm denoted by abbreviation MDEA. 

 

CLASSIC DIFFERENTIAL EVOLUTION 

ALGORITHM AND GLOBAL CONVERGENCE 

In this part we briefly describe the operation of CDEA. 

Generally, CDEA seeks for the minimum of the cost 

function by constructing whole generations of 
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individuals. Each individual is an ordered set of specific 

values corresponding to one point in the cost function 

domain. In this way each individual represents a potential 

solution to the optimization task. The quality of this 

individual is determined by the evaluation of the cost 

function corresponding to this individual. The next 

generation is formed from the existing generation by 

means of mutation and crossover operators. Specifically, 

we go successively through all individuals in the 

generation G. To each individual 
G

my  (termed as the 

target individual) we select randomly three other 

(different) individuals
G

ry 1 , 
G

ry 2 , 
G

ry 3  from the current 

generation. We form in a specific way (including 

randomness) a combination of these three random 

individuals and the target individual. This combination is 

termed as the trial individual and denoted 
trial

my . Then 

we evaluate the cost function for the target 
G

my and trial 

individual 
trial

my and compare the results. The individual 

with lower value of the cost function advances to the 

position of the target individual of the next generation 
1G

my . When this procedure is completed for all target 

individuals in generation G, we have constructed the new 

generation of individuals numbered G + 1.  

The next part illustrates CDEA operation in a definite 

way in the form of pseudo code. 

Input: 

Optimization task parameters: 

f  denotes the cost function, D is the dimension of the 

cost function domain,  maxmin , jj xx  is a domain of 

each cost function variable xj. 

 

CDEA parameters: 

NP denotes the generation size (the number of 

individuals in each generation), NG is the number of 

calculated generations, F stands for mutation factor 

(  2,0F ), and CR denotes the crossover probability 

(  1,0CR ). The symbol G stands for the generation 

number, index m is the number of the individual in the 

generation, index j describes the j-th component of a 

specific individual
my .  

Computation: 

1. Create an initial generation ( 0G ) of NP  

individuals 
G

my , ,1 NPm   (e.g. by use of relation 

(1)). 

2. a) Evaluate all individuals 
G

my  of the G-th 

generation (calculate )( G

myf for each individual 

G

my ). b) Store the individuals
G

my  and their 

evaluations )( G

myF into matrix B (each matrix 

row contains parameters of individual 
G

my  and its 

evaluation )( G

myF . That is matrix be has NP rows 

and D+1 columns ( NPm 1 ). 

3. while NGG   

a)  for 1:m  step 1  to NP  do 

(i)   randomly select index },,...,2,1{ Dsm   

(ii) randomly select indexes },,...,1{,, 321 NPrrr   

where mrl  for 31  l ;

323121 ,, rrrrrr  ; 

(iii) for 1:j step 1  to D  do  

if CRrand )1,0( or 
msj  ) then 

 G

jr

G

jr

G

jr

trial

jm yyFyy ,,,, 213
:   

else  
k

jm

trial

jm yy ,, :   

end if  

end for (j) 

 (iv) if    kmtrial

m yfyf   then 
trial

m

G

m yy  :1   

  else 
G

m

G

m yy  :1  

 end if 

end for (m) 

b) store individuals 
1G

my  and their evaluations 

 1Gmyf   NPm 1  of the new  

)1( G -st generation in the matrix B , 1:  GG  

end while (G). 

Output: 

The row of matrix B  that contains the corresponding 

value   };min{ BG

m

G

m yyF represents the best 

found individual opty . 

 

Comments 

The individual opty  in pseudo-code of CDEA is the final 

solution of the optimization problem. 

 

One way of possible forming the initial generation (G = 

0) of individuals 
0

my  is given by relation 

 min

0

, : jjm xy rand (0, 1)  
minmax jj xx  . (1) 

Values minjx and maxjx are lower and upper limit of 

variable xj. The function )1,0(rand randomly generates 

a value from a closed interval  1,0 .  

 
Counterexample to Global Convergence  

of CDEA (Premature Convergence) 

It is not difficult to find counterexamples to the global 

convergence of the CDEA. Let us consider for instance 

the following two graphs of cost functions with the 

domain in Euclidean space R2, see Figure 1. Even for the 

cost function shown in Figure 1 above the probability 

that the CDEA finds the global minimum of the cost 

function is less than one. The reason is that the CDEA 
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can converge in some cases relatively fast to the local 

minimum missing completely the global minimum. This 

results in concentrating the individuals in subsequent 

generations around the local minimum. As soon as the 

size of the generation falls under some critical value, the 

generation is too small to produce trial individuals that 

could hit the region in the vicinity of the global minimum. 

This situation is called a premature convergence. In this 

case even increasing the number of generations does not 

lead to increasing the chance to identify the global 

minimum. Moreover, the probability that the CDEA 

finds the global minimum falls with the decreasing 

measure of the global minimum region. The probability 

of finding the global minimum for the cost function in 

Figure 1 below is substantially smaller than for the cost 

function in Figure 1 above. Additionally, by a sufficient 

reduction of the measure of the global minimum region 

this probability can be made as close to zero as possible. 

 

 
 

Figure 1: Examples of cost functions with 

domains in R2 

 

Numerical Example 

We can present a specific cost function to demonstrate 

the limited ability of CDEA to converge to the global 

minimum of the cost function. To keep things simple we 

consider the domain of the cost function as a subset of the 

two dimensional Euclidean space R2. We will construct 

the cost function F(x1, x2) as a composition of two simple 

functions  

 

𝐹(𝑥1, 𝑥2) = 𝐹B(𝑥1, 𝑥2) + 𝐹M(𝑥1, 𝑥2). (2) 

The term FB(x1, x2) represents the base function. This 

function is smooth and has one shallow minimum. It can 

be defined for instance in the following way  

 

𝐹B(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2, 

 

with the domain D(FB) = ⟨−H, H⟩×⟨−H, H⟩, where H 

determines the boundary values of the domain.  

The term FM(x1, x2) denotes a modifier function. This 

function should be relatively steep and with a rather small 

domain. We use the function FM(x1, x2) to modify the 

underlying base function FB(x1, x2). The role of the 

function FM(x1, x2) is to realize the global minimum of 

the cost function F(x1, x2) in relation (2). To be able to 

construct the function FM(x1, x2) effectively, we 

introduce another auxiliary function FP, 

 

𝐹P(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − 1, 

 

with the domain D(FP) ={x1, x2: 12

2

2

1  xx }. It is 

obvious that the function FP(x1, x2) is defined exclusively 

on a unit circle and has values from the closed interval 

⟨−1, 0⟩. The graph of the function FP(x1, x2) is a circular 

paraboloid presented in Figure 2. 

 
Figure 2: Graph of the auxiliary function Fp (x1, x2) 

 

The function FM(x1, x2) is then formed as  

 

𝐹M(𝑥1, 𝑥2) = 𝜆h ∙ 𝐹P (
1

𝜌
(𝑥1 − 𝑥G1),

1

𝜌
(𝑥2 − 𝑥G2)). 

 

Here the number λh defines the height of the resulting 

circular paraboloid, ρ denotes the radius of the domain 

on which the modifier function FM(x1, x2) is defined. 

Obviously, the modifier function FM(x1, x2) is defined 

only for points that are closer to the point [xG1, xG2] than 

the radius of its domain ρ. The coordinates xG1, xG2 

specify the point, where the modifier function FM(x1, x2) 

attains its minimum. The overall cost function F(x1, x2) 

is then defined according to the relation (2) by the 

composite formula  

𝐹(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 + 𝜆h ∙ 𝐹P (
1

𝜌
(𝑥1 − 𝑥G1),

1

𝜌
(𝑥2 − 𝑥G2)) 

 (3) 

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 14 (2021) Seite 10



We have to choose the parameters λh, ρ, xG1 and xG2 in a 

reasonable way to obtain the required result. It is clear 

that we can control the dimensions of the modifier 

function domain by parameter ρ. The point [xG1, xG2] is to 

be placed relatively close to the boundary of the cost 

function domain. This means it is relatively far from the 

point [0, 0] representing the local minimum of the cost 

function analogously to the cost functions presented in 

Figure 1. Since the base function FB(x1, x2) is positive 

definite, it attains a positive value FB(xG1, xG2) at the point 

[xG1, xG2]. This means we have to take the parameter λh 

sufficiently large, so that the global minimum is 

essentially lower than the local minimum at the point 

[0, 0].  

We performed numerical experiments with following 

parameters: D(FB) = ⟨−H, H⟩×⟨−H, H⟩= ⟨−4, 4⟩×⟨−4, 4⟩ 
with measure µ(D (F)=82 = 64, xG1= xG2 =3. This means 

that the global minimum of the cost function F is at point 

[3,3] and local minimum at point [0,0]. Number of 

individuals in each generation NP =200, number of 

generation NG =160, value of parameter F=0.8 and value 

of parameter CR=0.9. We realized 200 numerical 

experiments with value of parameter 𝜌 =
1

10
 (then 

µ(D(FM)) = πρ2 ≐0.0314) and 200 numerical experiments 

with value of parameter 𝜌 =
1

16
  (then µ(D(FM)) ≐ 

0.01223). The results illustrating the limited ability of 

CDEA to identify the global minimum are summarized 

in Table 1. 

 

Table 1: Experimental testing of CDEA 

 

CDEA 

Local 

minimum 

hits 

Global 

minimum 

hits 

Success 

rate in % 

𝜌 =
1

10
 163 37 18.5 

𝜌 =
1

16
 185 15 7.5 

 

Based on the values given in Table 1, it can be assumed 

that the decreasing value of ρ (and thus value of µ(D(FM)) 

will significantly decrease the success rate of the CDEA 

algorithm in finding the global minimum. 

 

 

MODIFIED DIFFERENTIAL EVOLUTION 

ALGORITHM 

As illustrated in the previous part, CDEA does not in 

general guarantee the convergence to the global 

minimum of the cost function. This is caused by the too 

fast convergence of CDEA to the local minimum 

(premature convergence) resulting in rapid reduction of 

the generation size (which means a loss of diversity). The 

most straightforward way how to limit the premature 

convergence is to replace some individuals with the 

highest values of the cost function by random individuals 

in each generation. Though these random individuals 

reduce partially the convergence speed, they increase 

substantially the diversity of the generation. In technical 

terms, it is necessary to make one simple change in the 

CDEA scheme. We present only the differences with 

respect to CDEA. See the pseudocode  description of 

CDEA in chapter “Classic Differential Evolution 

Algorithm and Global Convergence”.  

Input: 

We add another parameter R that determines the ratio of 

random individuals in each generation,  1,0R , e.g., 

R = 0.1 means that 10% of individuals in each generation 

are generated randomly. 

Computation: 

We add another procedure to the part 3., specifically: 

c) determine in matrix B the quantity  RNP. of 

individuals with the highest cost function values and 

replace these individuals by randomly generated 

individuals (e.g. by use of relation (1)) from the search 

space). Note that here the symbol  x denotes the integer 

part of the real number x. 

 

This modified algorithm will be called the Modified 

Differential Evolution Algorithm (MDEA). We applied 

the numerical experiments on MDEA with the same input 

parameters as in the previous chapter on CDEA. In 

addition, the value of R parameter is equal to R = 0.1. The 

results are summarized in Table 2. 

 

Table 2: Experimental testing of MDEA 

 

MDEA 

Local 

minimum 

hits 

Global 

minimum 

hits 

Success 

rate in % 

𝜌 =
1

10
 34 166 83.0 

𝜌 =
1

16
 70 130 65.0 

 

Another positive feature of the algorithm MDEA is that 

if we increase the number of generations NG the global 

minimum will be identified with an increased probability. 

This probability can come close to 1 for a sufficiently 

high number G of generations. We call this aspect of the 

MDEA an asymptotic global convergence. We describe 

this topic in the following chapter. 

 

 

ASYMPTOTIC GLOBAL CONVERGENCE 

OF MDEA  

In this part we present several theoretical concepts and 

statements that can be used to prove the asymptotic 

global convergence of MDEA. More specifically, we will 

show that when the number of generations G→∞ then the 

probability that MDEA identifies the global minimum of 

the cost function approaches 1. 
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Optimal Solution Set 

We would like to find the minimum of the cost function 

with the lowest value 

 

min{𝐹(𝑥): 𝑥 ∈ 𝑆}, (4) 

 

where S is a measurable search space of a finite measure 

representing all possible configurations of variables 

)...,,( 21 nxxxx  . We suppose that the global 

minimum of function F exists on S. We define a solution 

set 
*S as 

 

𝑆∗ = {𝑥∗: 𝐹(𝑥∗) = min{𝐹(𝑥): 𝑥 ∈ 𝑆}}, 
 

where 
*x represent global minima of the function F. We 

introduce an optimal solution set 
*

S as 

 

𝑆𝜀
∗ = {𝑥 ∈ 𝑆: |𝐹(𝑥) − 𝐹(𝑥∗)| < 𝜀}, 

 

where ε >0 is a small positive real number. Denoting by 

μ the Lebessgue measure, we suppose that for each ε it 

holds μ(
*

S ) >0. 

 

Convergence in Probability 

To examine the global convergence of MDEA we need 

to introduce a concept of the convergence in probability 

defined in (Hu et al. 2013). 

 

Definition: Let {𝐺(𝑘), 𝑘 = 1,2, … } be a generation 

sequence created by a differential evolution algorithm to 

solve optimization task (4). We say that the algorithm 

converges to the optimal solution set in probability if 

 

lim
𝑘→∞

𝑝{𝐺(𝑘) ∩ 𝑆𝜀
∗ ≠ ∅} = 1, (5) 

 

where p denotes the probability of an event. 

 

Now, we can use this concept to formulate the following 

statement. 

 

Proposition: Let us suppose that for each generation 

𝐺(𝑘) of a differential evolution algorithm there exists at 

least one individual y such that 

 

𝑝{𝑦 ∈ 𝑆𝜀
∗} ≥ 𝛼 > 0, 

 

where 𝛼 is a small positive value. Then the algorithm 

converges to the optimal set 𝑆𝜀
∗ in probability. That is 

relation (5) holds. 

 

The proof of this proposition is stated in full in (Knobloch 

et al. 2017). 

 

It holds that for each generation G of the MDEA it is true 

 

0}{ *  Syp , (6) 

where 𝛼 is a small positive value. Here }{ *

Syp 

denotes the probability that  y belongs to 
*

S . The 

validity of relation (6) necessarily results from the 

generation of random individuals in each generation G of 

MDEA. It follows that MDEA converges to 
*

Sy for 

any small real positive number ε. This implies the 

asymptotic global convergence of MDEA. Thus, we 

know that MDEA converges to the global minimum. The 

asymptotic convergence of MDEA is proved in detail in 

(Knobloch et al. 2017), see also (Hu et al. 2013). 

Probability estimates of reaching the global minimum 

after performing G generations of MDEA are given in 

(Knobloch and Mlýnek 2020). These estimates help to 

decide after how many generations to finish the MDEA 

calculation. 

 

CONCLUSIONS 

CDEA is a universal optimization algorithm that is 

frequently used in technical projects, economy studies, 

natural sciences and other important areas of interest. 

Nevertheless, it has some principal limitations. The main 

weakness of CDEA is a possible premature convergence 

of the computing process to a local minimum of the cost 

function. We demonstrated this fact by means of a simple 

example. 

Identification of this weakness was the starting point for 

a search of an improved version of the algorithm that 

would provide better chances regarding the convergence 

to the global minimum of the cost function. MDEA is a 

result of these efforts. 

MDEA is not prone to the premature convergence 

because a certain ratio of random individuals in each 

generation makes it immune to the loss of generation 

diversity. From the theoretical point of view, we proved 

that MDEA converges asymptotically to the global 

minimum of the cost function in probabilistic sense. 

The use of MDEA has proved successful to the authors 

in solving complicated practical optimization problems. 

For example, it is the task of optimizing the placement of 

infrared heaters over a metal thin walled mould in the 

production of artificial leather for the automotive 

industry (Slush Moulding technology). 

The cost function of this optimization problem is a 

function of many variables (often 300 and more) and has 

many local minima. Gradient methods, genetic 

algorithms and also CDEA found only a local minimum 

of the corresponding cost function (this optimization 

problem is described in more detail in (Mlýnek and 

Knobloch 2018) and (Mlýnek et al. 2016). MDEA has 

also proved successful in optimizing the fibre winding 

procedures using a fibre-processing head and a non-

bearing frame moved by an industrial robot (for more 

details see (Mlýnek et al. 2020)). 
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