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ABSTRACT
This paper tackles area surveillance with a moving camera
by change detection. None of the existing datasets for
change detection meets a surveillance scenario where a
camera is mounted on a moving platform and pointed
in the direction of moving. Thus, this paper creates a
new dataset including several challenging points. For
this dataset, this paper employs a composable method and
proposes some components. To evaluate the proposed
components, some corresponding classic methods were
also tested on the dataset. As a result, the proposals
outperformed them. Moreover, this paper investigated the
relationship between the parameters of the components
and their performance.

INTRODUCTION
Surveillance systems have been attracting attention be-
cause they have a great potential to reduce the workload
of monitors. Surveillance systems can be applied to vari-
ous fields such as urban monitoring, agriculture, and traffic
analysis with manifold sensors. In recent years, some sen-
sors have been mounted on Unmanned Aerial Vehicles or
Unmanned Ground Vehicles (UGVs) as the development
of industrial technologies. This paper aims to automati-
cally observe areas for security using these autonomous
vehicles. To do so, this paper overviews some previous
methods and datasets in the following paragraphs and pro-
poses a new dataset and method.

Regarding the area monitoring, there are two types of au-
tomatic methods: target-limited and target-agnostic. The
target-limited methods focus on a specific anomaly in-
cluding human behaviors ( Morais et al. 2019; Singh et
al. 2018). While the target-limited methods performed
well, they cannot be a complete replacement for humans
because they can only detect the expected target. The
idea of combining them does not work because one can-
not obtain or even list all possible abnormal patterns. The
target-agnostic methods assume the available data as a
distribution of normal situations and detect samples far
from it as anomalies ( Chu et al. 2019; Hao et al. 2019).

The target-agnostic methods for area surveillance can be
roughly divided into two groups based on situation types.
One group is for the place where people are NOT supposed
to be. Methods of this sort have to be able to detect the
emergence or disappearance of anything. The other group
is for the place where people appear. In such places,
detectors are required to report anomalous behaviors of
humans too. The former situation can be solved by change
detection (CD) and the latter by anomaly detection. The
former is more important in practice because if there are
people, they can take action.

Although a large number of studies devised CD methods,
all of them employed fixed cameras. While research of this
kind plays an important role in surveillance, blind spots of
the fixed cameras can arouse a controversy over security.
The blind spots can be reduced by mounting cameras on
a moving platform such as autonomous vehicles.

There are only four datasets for CD with moving vehi-
cles. One dataset, known as VDAO (Silva et al. 2014),
was created inside an offshore facility. A camera on a
mobile robotic platform on a straight rail was used. This
dataset contains 15 different abnormal objects such as
bags. (Sakurada and Okatani 2015) constructed two
datasets consisting of panoramic images: TSUNAMI and
GSV. TSUNAMI captured scenes of tsunami-damaged ar-
eas in Japan. GSV is a collection of images on Google
Street View. The last dataset is the so-called VL-CMU-
CD dataset (Alcantarilla et al. 2018). It includes pictures
taken in the city of Pittsburgh, PA, USA, over a year.

The four CD datasets with moving devices do not suf-
fice for area surveillance. Every dataset but VDAO (i.e.
TSUNAMI, GSV, and VL-CMU-CD) was not designed
for the field of surveillance. Thus, their change types such
as buildings are not anomalous. The VDAO dataset only
contains abandoned objects, not humans. Moreover, they
do not contain looming motion. Such motion is unavoid-
able if one employs a moving camera in a narrow place in-
cluding a hallway. In response to the inadequacy of the ex-
isting datasets, a new CD dataset is created with a moving
monocular camera on a hallway. Compared to the existing
datasets, the proposed one has some challenging points:
1) looming motion, under which everything varies grad-
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ually in size and position; 2) non-identical trajectory and
inconsistent viewing angles, which cause parallax leading
to false alarm; 3) illumination change due mainly to dif-
ferent times of the day. The dataset is detailed more in the
EXPERIMENTS AND RESULTS section. To tackle the
proposed dataset, a composable procedure is employed as
in (Carvalho et al. 2019). However, it was proposed for
the VDAO dataset, so three new components are designed
for the proposed dataset: Video Compression (VC), Tem-
poral Alignment (TA), and Frame Comparison (FC).

To evaluate the proposed TA and FC components, classic
TA and FC methods are also tested. (Evangelidis and
Bauckhage 2013) proposed a TA method using local de-
scriptors. One of the TA datasets they tackled is similar
to the proposed dataset, which contains looming motion.
(Carvalho et al. 2019) proposed a structured method for
the VDAO dataset and employed Zero-mean Normalized
Cross Correlation (ZNCC) for dissimilarity calculation.

The contributions of this paper are two-fold.
• A dataset has been created with a moving monocular

camera. This is the first video-CD dataset that has
looming-motion for area surveillance.

• A structured way has been proposed to deal with the
proposed dataset.

METHOD

This paper employs a composable procedure as in (Car-
valho et al. 2019) with three new components. Figure
1 illustrates its whole procedure, where dotted line boxes
indicate that the corresponding part was originally pro-
posed in the literature, and filled-in boxes are the new
components that this paper proposes. The input is a pair
of videos: reference video and target one. The method
detects changes in the target video against the reference
one. The first process, VC, is a novel process for reducing
the computation cost of the downstream processes. TA
synchronizes a compressed version of the target video to
that of the reference one. SA performs image registration
between each target frame and the matched reference one.
FC computes dissimilarity values of each matched frame
pair and binarizes them with a threshold.

For each component, visual information of videos needs to
be extracted. To do so, famous CNN architectures, called
VGG13 and VGG16 (Simonyan and Zisserman 2014), are
used. They consist of three types of layers: convolution,
max pooling, and fully connected layer. In this paper, all
the fully connected layers of VGGs are discarded because
the components demand just spatial information, not fea-
tures for classification. Training a deep network requires
a considerable amount of data and time. Therefore, this
paper exploits the pre-trained parameters of VGGs on the
ImageNet dataset (Deng et al. 2009). For VC and TA, the
last pooling layer of VGG16 is replaced with global aver-
age pooling (GAP) (Lin et al. 2013). GAP is considered
to lose spatial information. However, it seems that this

weakness potentially renders a matching method insensi-
tive to parallax or too partial textures. The GAP version
of VGG16, noted as VGG16’, returns a 𝐶 dimensional
feature map for the input image.
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Figures 1: The Whole Procedure of the Proposed Method

Proposed Video Compression (VC)
With the aim of area surveillance, it is not necessary to
inspect all frames since several consecutive frames con-
tain almost the same contents. Therefore, VC reduces
redundant frames according to the similarity of sequen-
tial ones. Let 𝑆𝑟 = {𝐼𝑟1 , 𝐼𝑟2 , ..., 𝐼𝑟𝑛𝑟 }, 𝑆𝑡 = {𝐼 𝑡1, 𝐼

𝑡
2, ..., 𝐼

𝑡
𝑛𝑡 }

be the reference sequence and the target one, respec-
tively. 𝑛𝑟 and 𝑛𝑡 are the number of the reference
frames and that of the target ones, respectively. The
aim of this component is to retrieve key frame indices
𝑋𝑟 = {𝑖𝑟1 , 𝑖𝑟2 , ..., 𝑖𝑟𝑛𝑟𝑐 }, 𝑋 𝑡 = {𝑖𝑡1, 𝑖

𝑡
2, ..., 𝑖

𝑡
𝑛𝑡𝑐 }. 𝑛𝑟𝑐 and 𝑛𝑡𝑐

are the number of the reference key frames and that of
the target ones, respectively. Unless otherwise noted, all
the frames but the key frames are to be disregarded in the
ensuing processes. VC is performed in a chronological
manner as in Algorithm 1, where 𝑐𝑜𝑠_𝑠𝑖𝑚(𝑣1, 𝑣2) is the
cosine similarity value of two vectors 𝑣1, 𝑣2. Note that
this step processes independently the target video and the
reference one.

Algorithm 1 Video Compression
In: 𝑆, 𝑇𝑐 // 𝑆: set of video frames. 𝑇𝑐: threshold.
Out: 𝑋 // 𝑋: set of key frame indices.
1: array 𝑋 ← {1}
2: 𝑙 ← 1
3: while 𝑙 < 𝑆.𝑙𝑒𝑛𝑔𝑡ℎ do
4: for ℎ = 𝑙 + 1 to 𝑆.𝑙𝑒𝑛𝑔𝑡ℎ do
5: if 𝑐𝑜𝑠_𝑠𝑖𝑚(𝑉𝐺𝐺16′(𝑆[𝑙]), 𝑉𝐺𝐺16′(𝑆[ℎ])) <

𝑇𝑐 then
6: 𝑋 .append(h)
7: break
8: end if
9: end for
10: 𝑙 ← ℎ
11: end while
12: return 𝑋
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Proposed Temporal Alignment (TA)
TA matches frames in the target video to those in the
reference video. This paper proposes a new TA method
using deep features. Let 𝑋̂ = {𝑘̂1, 𝑘̂2, ..., 𝑘̂𝑛𝑡𝑐 } be the
indices of the matched reference frames. 𝑋̂ is calculated
by Equation (1).

𝑘𝑙 = arg max
ℎ

𝑐𝑜𝑠_𝑠𝑖𝑚(𝑉𝐺𝐺16′(𝐼 𝑡
𝑖𝑡
𝑙
), 𝑉𝐺𝐺16′(𝐼𝑟𝑖𝑟

ℎ
)),

(1)
where 𝑙 = 1, 2, ..., 𝑛𝑡𝑐 . To prevent abruption from the
previously matched index, a search range is restricted as
ℎ ∈ {𝑚𝑏𝑎𝑐𝑘

𝑙 , 𝑚𝑏𝑎𝑐𝑘
𝑙 + 1, ..., 𝑚front

𝑙 }. 𝑚𝑏𝑎𝑐𝑘
𝑙 , 𝑚

front
𝑙 are

calculated by Equations (2), (3), respectively.

𝑚𝑏𝑎𝑐𝑘
𝑙 =

{
𝑖𝑟1 if 𝑙 = 1,
max(𝑖𝑟1 , 𝑘̂𝑙−1 − 𝑏𝑎𝑐𝑘) otherwise,

(2)

𝑚
front
𝑙 =

{
front if 𝑙 = 1,
min(𝑖𝑟𝑛𝑟𝑐 , 𝑘̂𝑙−1 + front) otherwise,

(3)

where 𝑏𝑎𝑐𝑘 and front are hyperparameters, discussed in
the EXPERIMENTS AND RESULTS section.

Spatial Alignment (SA)
It is impossible to take all videos in an exactly consistent
angle or position. Consequently, even if TA perfectly syn-
chronizes the input videos, the matched frame pairs will
have different image planes. Thus, SA, or image registra-
tion, is performed with Homography transformation. Let
𝐻 (𝐼1, 𝐼2) be a transformed image of 𝐼1 to 𝐼2. The outside
of an image plane is treated as black (i.e. RGB value (0,
0, 0)), when it gets into the image plane by Homogra-
phy transformation. This black area would be detected
as change in the following stage. Therefore, the counter-
part of the target frame is masked. 𝐼 ′ signifies a masked
version of an image 𝐼.

Proposed Frame Comparison (FC)
The last component of the proposed method is FC. FC
compares the spatiotemporally aligned frame pairs in the
upstream processes and calculates dissimilarity maps. Af-
ter that, it computes change maps by binarizing the dis-
similarity maps with a threshold. Dissimilarity maps are
obtained based on the idea by (Kim et al. 2017). They
proposed a similarity calculation method with the VGG13
network for template matching. Feature maps of a tem-
plate image and a target one were extracted from a mid-
convolutional-layer of the network. The target feature map
was searched with a sliding window in order to determine
the patch of the target image most similar to the template
image. They used Normalized Cross Correlation (NCC)
as a similarity criterion.

A feature map of the 𝑚-th target frame and that of
the matched reference frame are denoted as 𝑀 𝑡

𝑚 =
𝑉𝐺𝐺13((𝐼 𝑡𝑚) ′), 𝑀𝑟

𝑚 = 𝑉𝐺𝐺13(𝐻 (𝐼𝑟
𝑘̂𝑚
, 𝐼 𝑡𝑚)), respec-

tively. Note that the target frames and the reference ones,

in the setting of this paper, have the same resolution, mean-
ing their feature maps are of the same shape. This fact en-
ables the feature maps to be compared in a position-wise
manner as 𝑆𝑀𝑚,𝑖, 𝑗 = 𝑐𝑜𝑠_𝑠𝑖𝑚(𝑀 𝑡

𝑚,𝑖, 𝑗 , 𝑀
𝑟
𝑚,𝑖, 𝑗 ), where

𝑖 ∈ {1, 2, ..., 𝐻}, 𝑗 ∈ {1, 2, ...,𝑊}, and 𝑀 𝑡
𝑚,𝑖, 𝑗 and 𝑀𝑟

𝑚,𝑖, 𝑗
are 𝐶-dimensional vectors. It is noteworthy that NCC
corresponds to cosine similarity when the target pair is
two vectors. By following (Kim et al. 2017), one can
obtain a similarity map since it was proposed for template
matching. Thus, it is converted into a dissimilarity map
as 𝐷𝑀𝑚,𝑖, 𝑗 = 1 − 𝑆𝑀𝑚,𝑖, 𝑗 .

A multi-scale option is introduced as in (Carvalho et al.
2019) with some modifications. (Carvalho et al. 2019)
obtained different-scale maps by resizing an frame. Sub-
sequently, they resized them to the input size and just
added them up. This way can be followed, but there are
some constraints because of the CNN attribution. Some
CNN layers downsample an image. While their process-
ing, they would discard the right-end or bottom-end infor-
mation of the input image not even considering it due to
the filter size or the stride of those layers. VGG13 has five
pooling layers, the window size of which is 2 × 2. The
other layers of VGG13 do not affect the output size. For
this reason, the resolution of the input should be divisible
by 25 = 32 to avoid loss of spatial information. Moreover,
the aspect ratio of the proposed dataset is 16:9. Putting
these conditions together, two resolution candidates are
obtained: 512×288 and 1024×576. This paper extracts
features only from the final pooling layer of VGG13. The
feature maps from it contain the most abundant peripheral
context than those from the preceding layers.

Three weight types are proposed to combine different-
scale dissimilarity maps 𝐷𝑀 𝑘 , 𝑘 ∈ {1, 2, ..., 𝑛𝑑𝑚}. 𝑛𝑑𝑚
denotes the total number of 𝐷𝑀 . Equation (4) shows how
to create a weighted map, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝐷𝑀 .

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝐷𝑀𝑖, 𝑗 =
∑
𝑘

𝑤𝑘𝑟𝐷𝑀 𝑘
𝑖, 𝑗 , (4)

where 𝑟𝐷𝑀𝑘 is the resized 𝐷𝑀 𝑘 to the input size
(𝑊𝑜𝑟𝑔, 𝐻𝑜𝑟𝑔) with nearest neighbor interpolation.
𝑖 ∈ {1, 2, ...,𝑊𝑜𝑟𝑔} and 𝑗 ∈ {1, 2, ..., 𝐻𝑜𝑟𝑔} are 𝑥𝑦-
coordinate positions. 𝑤𝑘 is the 𝑘-th weight. One weight
type is MAX as in Equation (5).

𝑤𝑘 =
max(𝐷𝑀 𝑘 )∑𝑛𝑑𝑚
𝑙=1 max(𝐷𝑀 𝑙)

. (5)

A change is more detectable by a suited-scale map than
the other scale maps. Thus, using a certain-scale map
probably results in higher dissimilarity values for the
corresponding-scale change than the other scale maps.
Based on this idea, the MAX weight type is designed not
to miss changes. Another is EQUAL as in Equation (6).

𝑤𝑘 =
1

𝑛𝑑𝑚
. (6)

In EQUAL, all weights have the same value. The third
weight type is LARGE as in Equation 7. Assume the
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size of 𝐷𝑀1 be the smallest of the maps 𝐷𝑀1, 𝐷𝑀2, ...,
𝐷𝑀𝑛𝑑𝑚 and set 𝑤1 as the possible maximum weight.

𝑤𝑘 =


1

1 +∑𝑛𝑑𝑚
𝑙=2 max(𝐷𝑀 𝑙)

if 𝑘 = 1,

max(𝐷𝑀𝑘 )
1 +∑𝑛𝑑𝑚

𝑙=2 max(𝐷𝑀 𝑙)
otherwise.

(7)

With the LARGE weight, the smallest dissimilarity map
is assigned with the possible maximum weight. In other
words, the weights of the other scale maps would have
smaller weights than the case of the other weight types.
The smallest map contains the spatially roughest infor-
mation, meaning it includes less environmental effects
such as parallax than the other maps. Thus, the LARGE
weight is expected to mitigate environmental effects caus-
ing false alarm. Once the weighted map is obtained by
Equation (4), a change map can be calculated by binariz-
ing the weight map. The threshold value is discussed in
the EXPERIMENTS AND RESULTS section.

EXPERIMENTS AND RESULTS
Dataset
The existing datasets do not contain anomalous changes.
Therefore, a new dataset has been created by recording
some looming-motion videos with a radio-controlled ve-
hicle. The vehicle ran on a straight corridor at a speed
of 0.5 meters per second, and never moved backward. Its
trajectories were not identical, and the viewing angle of
the vehicle was inconsistent. The proposed dataset in-
cludes two sets of a reference and six target videos about
1.5 minutes long each, so the total number of the videos
is fourteen. The two sets were captured at different times
of the day: day and night. Table 1 shows what kind
of changes the target videos contain. Each of the target
videos was temporally, spatially aligned to the time-wise
corresponding reference video. For TA assessment, each
target frame was temporally aligned to a reference one at
hand. Subsequently, dissimilarity maps were calculated
by comparing each of the aligned frame pairs. To evaluate
FC performance, each change was labeled with a bound-
ing box. The proposed dataset is challenging due mainly
to parallax or strong illumination change.

Parameter setting
The proposed method has some adjustable parameters. 𝑇𝑐
was set to 0.995. For TA, 𝑏𝑎𝑐𝑘 was fixed to zero since the
camera never moved backward in the dataset. Preferable
values for front were roughly searched for by grid search
with a set of values (3, 5, 7, 10). Consequently, this pa-
per chose front= 7 for the day targets and front= 3 for
the night ones. As referred to in the METHOD section,
a multi-scale option was employed, and the input images
were resized to two scales: 512×288 and 1024×576. For
ZNCC, this paper followed (Carvalho et al. 2019) and
prepared scales: 20×11, 40×22, 80×45, and 160×90. Be-
sides, another scale 320×180 was also tested for a deeper
survey. The window size of ZNCC was set to five.

Table 1: Change Types in the Proposed Dataset

time data name included change type

day

fallen person (fallen)
bottle

standing person (standing)
umbrella (dropped)

walking
person (walking)
umbrella (leaning)
door

stacked two boxes (stacked)
separate two boxes (separate)
bag bag

night

fallen
person (fallen)
bottle
shoe

standing
person (standing)
umbrella (leaning)
shoe

walking
person (walking)
umbrella (dropped)
shoe

stacked two boxes (stacked)
separate two boxes (separate)
bag bag

Experiment
The proposed TA method was compared with (Evange-
lidis and Bauckhage 2013). To give a quantitative com-
parison, this paper followed (Diego et al. 2013). They
set a ground-truth interval [𝑙𝑡 , 𝑢𝑡 ] for each index 𝑡 of a
sequence and calculated TA errors as in Equation (8).

𝑒𝑟𝑟 (𝑡, 𝑘𝑡 ) =
{

0 if 𝑙𝑡 ≤ 𝑘𝑡 ≤ 𝑢𝑡 ,

min( |𝑙𝑡 − 𝑘𝑡 |, |𝑢𝑡 − 𝑘𝑡 |) otherwise,
(8)

where 𝑘𝑡 is the 𝑡-th index matched by a TA method and 𝑡 ∈
{1, 2, ..., 𝑛𝑟𝑐}. The one-by-one ground truth 𝐺𝑇𝑡 , which
the proposed dataset included, was expanded by one on
the negative and positive sides (i.e. 𝑙𝑡 = max(1, 𝐺𝑇𝑡 −1),
𝑢𝑡 = min(𝑛𝑟𝑐 , 𝐺𝑇𝑡 + 1)). Table 2 shows rates of frames
with equal or less than each error. TA with VGG16’
provided better results than (Evangelidis and Bauckhage
2013) in all the videos. In case of 𝑒𝑟𝑟 = 0, the error
gaps are at least 8.9% (day/separate) and at most 54.5%
(day/fallen). Even when comparing the 𝑒𝑟𝑟 = 0 results
by VGG16’ and the 𝑒𝑟𝑟 ≤ 2 results by (Evangelidis
and Bauckhage 2013), most of the former results are bet-
ter. Comparing the day with the night, both methods
rather struggled to align the day sequences. Looking at
𝑒𝑟𝑟 = 0, the gaps between day/Average and night/Average
are 14.9% (VGG16’) and 39.6% (Evangelidis and Bauck-
hage 2013). This is because sunlight through windows
formed different shapes on the wall and floor and affected
the surrounding brightness, making the day videos of the
proposed dataset more challenging. This sunlight wors-
ened (Evangelidis and Bauckhage 2013) more strongly
than VGG16’ because the former method using local de-

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 14 (2021) Seite 67



scriptors unfortunately captured the sunlight changing its
form. On the other hand, such local changes were invisi-
ble for VGG16’ thanks to its GAP.

With the TA results by VGG16’, the FC performance of
the proposed pipeline was evaluated by the area under
the receiver-operator curve (AUC). VGG13 and ZNCC
with the three weight types were compared as shown in
Table 3. This result only exhibits the best combination
of scales: [512×288, 1024×576] for VGG and [20×11,
40×22, 80×45] for ZNCC. Table 3 indicates three notable
points. Firstly, VGG13 outperformed ZNCC in all of the
scenarios. Secondly, both methods performed the worst
on day/walking and night/stacked for each time. What
deteriorated them is investigated in the following para-
graph. Thirdly, the weight type provided just a marginal
difference. This is because if just a single pixel in one
of the different-scale maps has a high value, it pushes up
the weight of that map. Therefore, all weights ended up
getting almost the same value.

Table 4 shows AUC scores of the FC methods with and
without the proposed TA results. Only the LARGE weight
type was shown as it performed the best. At day/walking
and night/stacked in Table 4, large gaps can be seen. This
suggests the failure of TA led to the terrible FC per-
formance. This suggestion was confirmed by counting
detectable pixels, which were non-masked ones in the
METHOD section. The inner rate columns in Table 4
show each detectable pixel rate (%). Non-change areas
are the outside of bounding boxes, and change areas are
the inside. As one can see, the change inner rates for
day/walking and night/stacked are obviously low, mean-
ing a large part of the change areas was regarded as un-
changing. Therefore, Table 4 proves TA plays a pivotal
role in CD.

This paper expanded on how scale sizes affected results.
Table 5 shows AUC scores for VGG13 and ZNCC with
single scales. Smaller resolutions provided better scores
because the AUC was a pixel-wise criterion. That is, a
method tuned for larger objects contributes to the score
more than smaller ones. Also, this tendency can be
found in the best set of scales for ZNCC ([20×11, 40×22,
80×45]). Another notable point is that, comparing the
AUC scores in Table 5 with the AUC scores using the TA
ground truth in Table 4, the combination of multi scales
enhanced the detection ability. In addition to the AUC,
this paper looked into the relationship of scales and dis-
similarity values for each object. This paper calculated the
median of dissimilarity values belonging to each change
type or the background and then a ratio of each object me-
dian to the background one. If a ratio is less than 1.0, the
corresponding change is indistinguishable from the back-
ground. The higher it is, the more detectable the change is.
Note that the looming motion in the videos significantly
varies the size of changes. Thus, Table 6 only shows “per-
son” and “bottle”, a large and a relatively small change,
in {day, night}/fallen. One can see the tendency of larger

resolutions spotting smaller changes and vice versa.

Finally, to discuss the FC performance for each change
type, a ratio of each object median to the background one
was computed with VGG13 ([512×288, 1024×576]) and
ZNCC ([20×11, 40×22, 80×45]) as shown in Table 7.
The weight type was fixed to LARGE as in Table 4. Ta-
ble 7 indicates some characteristics of ZNCC and VGG13.
ZNCC shows distinctively strong and weak points. It
failed to detect the smallest change, “bottle”. Moreover,
the value for a relatively small object “umbrella” is signif-
icantly smaller than the other changes except for “door”.
Note that although “shoe” might sound small, it appears
close to the vehicle trajectories. Thus, “shoe” looks big in
the proposed dataset. On the other hand, VGG13 success-
fully detected “bottle”. Its ratio is actually close to 1.0, but
this result seems reasonable because “bottle” is not only
small but also unobtrusive in the proposed dataset. For
the other changes including “umbrella”, VGG13 almost
impartially spotted them. This implies that VGG13 does
not largely depend on the input scales. This is because its
convolutional layers acquire surrounding information.

CONCLUSION

This paper aims to automatically monitor areas for security
using a moving camera instead of humans. None of the ex-
isting CD datasets was designed for such a purpose. Thus
a new dataset for area surveillance has been built with a
UGV. Subsequently, this paper has introduced a structured
method and devised three components for it: VC, TA, and
FC. For FC, three ways to combine different-scale maps
have also been proposed. To perform an evaluation, the
proposed TA and CD methods were compared with classic
methods. Through the experiments, this paper showed the
effectiveness of the proposed method in area surveillance
using a moving camera.

There are some limitations in the proposed method. First,
the proposed CD method cannot detect changes in a target
frame if the matched reference frame does not contain the
spatially corresponding region. In terms of false positive,
there were some times the method falsely detected objects
as changes due to difference in viewing angle or position
and the sunlight. Second, the FC performance strongly de-
pends on the preceding procedure: TA and SA, as shown
in Table 4. Third, if changes appear in a dominant part of
an image, TA and SA would provide a poor result. Finally,
the reference video has to contain the whole scenes of the
target video. This limits a range of applications.

A piece of the future work is to improve the proposed
method by overcoming the limitation. It is necessary to
research how to make methods robust to environments.
Evaluation-wise, this paper performed an evaluation with
the pixel-wise AUC. As aforementioned, it tended to give
better scores to a method tuned for larger changes. This
tendency is not appropriate for surveillance. For this
reason, a new frame-level evaluation should be consid-
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Table 2: Frame Rates (%) with Equal or Less than Each Error for TA

VGG16’ georgios
time data 𝑒𝑟𝑟 = 0 𝑒𝑟𝑟 ≤ 1 𝑒𝑟𝑟 ≤ 2 𝑒𝑟𝑟 = 0 𝑒𝑟𝑟 ≤ 1 𝑒𝑟𝑟 ≤ 2

day

fallen 68.1 80.1 84.3 13.6 20.4 26.7
standing 52.3 70.5 76.7 8.0 11.9 14.8
walking 55.7 73.4 83.7 18.2 26.1 34.5
stacked 78.7 88.1 94.1 38.6 46.0 49.0
separate 78.8 90.2 90.7 69.9 85.0 89.1
bag 67.7 80.8 83.8 18.2 23.7 27.8
Average 66.9 80.5 85.6 27.8 35.5 40.3

night

fallen 91.3 96.9 100.0 81.6 87.2 91.3
standing 95.3 97.9 98.4 68.6 79.1 84.3
walking 98.5 100.0 100.0 85.8 92.9 93.9
stacked 79.7 91.9 97.7 54.7 65.7 70.9
separate 68.0 74.6 80.1 27.6 40.3 51.9
bag 97.8 100.0 100.0 86.0 91.6 98.3
Average 81.8 93.6 96.0 67.4 76.1 81.8

Table 3: AUC Scores with the Proposed TA Component for FC

VGG13 ZNCC
time data MAX EQUAL LARGE MAX EQUAL LARGE

day

fallen 0.870 0.871 0.871 0.745 0.739 0.738
standing 0.842 0.842 0.842 0.731 0.730 0.729
walking 0.686 0.688 0.689 0.654 0.661 0.663
stacked 0.860 0.862 0.863 0.708 0.709 0.704
separate 0.813 0.817 0.818 0.765 0.784 0.786
bag 0.926 0.925 0.925 0.812 0.803 0.801
overall 0.833 0.834 0.835 0.736 0.738 0.737

night

fallen 0.913 0.914 0.914 0.834 0.837 0.838
standing 0.915 0.916 0.916 0.821 0.820 0.820
walking 0.917 0.921 0.922 0.864 0.877 0.879
stacked 0.584 0.583 0.583 0.512 0.513 0.515
separate 0.899 0.899 0.899 0.837 0.840 0.841
bag 0.901 0.903 0.904 0.808 0.812 0.811
overall 0.855 0.856 0.856 0.779 0.783 0.784

Average 0.844 0.845 0.845 0.758 0.760 0.760

Table 4: Change/Non-Change Inner Rates (%) and AUC Scores with and without the Proposed TA Component

TA_VGG16’ TA_GROUND_TRUTH

time data non-change
inner rate

change
inner rate VGG13 ZNCC non-change

inner rate
change

inner rate VGG13 ZNCC

day

fallen 83.2 97.1 0.871 0.738 86.9 98.6 0.908 0.770
standing 80.2 92.9 0.842 0.729 85.4 90.8 0.869 0.754
walking 79.4 69.8 0.689 0.663 82.0 85.9 0.831 0.738
stacked 86.7 100.0 0.863 0.704 88.3 100.0 0.853 0.691
separate 92.3 86.2 0.818 0.786 93.6 81.1 0.798 0.786
bag 81.4 97.9 0.925 0.801 83.5 100.0 0.966 0.862

night

fallen 92.6 98.5 0.914 0.838 92.5 97.9 0.914 0.842
standing 87.9 99.6 0.916 0.820 88.1 98.1 0.929 0.841
walking 91.2 95.1 0.922 0.879 90.5 97.3 0.936 0.889
stacked 86.7 64.9 0.583 0.515 88.5 98.1 0.861 0.727
separate 82.5 98.6 0.899 0.841 87.3 99.4 0.940 0.869
bag 93.5 93.4 0.904 0.811 94.2 93.4 0.911 0.815

Average 0.845 0.760 0.893 0.799
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Table 5: AUC Scores for Different Scales with the TA Ground Truth

VGG13 ZNCC
time data 512×288 1024×576 20×11 40×22 80×45 160×90 320×180

day

fallen 0.910 0.880 0.703 0.766 0.764 0.738 0.699
standing 0.865 0.841 0.706 0.741 0.719 0.683 0.631
walking 0.848 0.790 0.731 0.725 0.678 0.618 0.571
stacked 0.837 0.831 0.572 0.689 0.717 0.719 0.697
separate 0.815 0.757 0.834 0.758 0.677 0.607 0.550
bag 0.952 0.949 0.762 0.842 0.863 0.824 0.754
overall 0.871 0.841 0.718 0.753 0.736 0.698 0.650

night

fallen 0.908 0.890 0.807 0.830 0.818 0.768 0.710
standing 0.919 0.905 0.787 0.835 0.804 0.704 0.609
walking 0.936 0.895 0.891 0.865 0.819 0.740 0.663
stacked 0.833 0.854 0.686 0.709 0.726 0.728 0.699
separate 0.936 0.918 0.847 0.856 0.834 0.796 0.747
bag 0.909 0.880 0.793 0.815 0.793 0.707 0.599
overall 0.907 0.890 0.802 0.818 0.799 0.740 0.671

Average 0.889 0.866 0.760 0.786 0.768 0.719 0.661

Table 6: The Ratio of Each Median of Two Objects to the Background One for Each Scale

VGG13 ZNCC
time change 512×288 1024×576 20×11 40×22 80×45 160×90 320×180

day person 3.39 2.76 1.90 4.36 4.80 3.58 2.54
bottle 2.78 2.64 1.20 1.09 3.40 2.54 2.14

night person 4.95 3.13 13.50 20.00 13.67 5.41 2.64
bottle 0.92 1.64 0.50 0.33 0.33 1.29 1.15

Table 7: The Ratio of Each Object Median to the Background One

person bottle umbrella door box bag shoe
VGG13 3.23 1.46 2.82 2.80 3.30 3.38 2.91
ZNCC 6.10 0.70 2.70 3.20 6.40 5.50 4.40

ered. Finally, the proposed dataset contains little vari-
ation. Thus, it is required to record videos in different
seasons or weather. On top of that, other places such as
curves should be included.
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