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ABSTRACT

Understanding battery capacity degradation is instru-
mental for designing modern electric vehicles. In this
paper, a Semi-Empirical Model for predicting the Ca-
pacity Loss of Lithium-ion batteries during Cycling and
Calendar Aging is developed. In order to predict the Ca-
pacity Loss with a high accuracy, battery operation data
from different test conditions and different Lithium-ion
batteries chemistries were obtained from literature for
parameter optimization (fitting). The obtained models
were then compared to experimental data for validation.
Our results show that the average error between the
estimated Capacity Loss and measured Capacity Loss is
less than 1.5% during Cycling Aging, and less than 2%
during Calendar Aging. An electric mining dumper, with
simulated duty cycle data, is considered as an application
example.

INTRODUCTION

The transport sector is one of the largest global
emitters of carbon dioxide (CO2), accounting for about
22% of the total emission (Kluschke et al., 2019).
Electric cars have proven to be an efficient way of
reducing these emissions in passenger transport, but
electrification of heavy-duty vehicles (e.g. trucks, forest
harvesters and mining dumpers) is more challenging,
mainly due to limitations in battery technology. Among
others, Liimatainen et al. (2019) concluded that battery
electric trucks have not been a viable option to replace
traditional diesel-powered ones because of the high
energy requirements and low energy density of batteries.
Furthermore, the absence of charging facilities in off-
road conditions may render electrification of forest har-
vesters impractical. On the other hand, heavy-duty vehi-
cles are typically tailored for a specific application niche,
and their production batches are much smaller than those
for passenger cars, which means that application-specific

design optimization is both necessary and can also have
a significant effect on the vehicle performance — and
thus on business profitability. At the heart of this design
optimization is an understanding of the performance of
lithium-ion (Li-ion) batteries.

One major difference between internal combustion
engine vehicles (ICEV) and battery electric vehicles
(BEV) is that the energy system in the latter degrades
during use. While the performance of a diesel engine
remains largely unaffected by repeated refuels and use,
this is not the case for Li-ion batteries (LIBs): The
capacity of LIBs decreases in both repeated cycling
and storage. Moreover, the LIB degradation process
depends on the battery chemistry and the way (or path)
of usage. Dubarry and Devie (2018) concluded that the
LIB cell temperature history had the strongest impact on
degradation followed by the C-rate (i.e. charge/discharge
current) and the state of charge (SoC). Also, they found
that LIBs lose capacity faster at low SoCs during cal-
endar aging and under small SoC swings while under
cycling.

It is obvious from the above discussion that design
optimization for heavy-duty battery electric vehicles
(HDBEV) must address battery degradation. The upshot
is that, in contrast to passenger cars, since a HDBEV
is designed for a specific application, the typical usage
conditions — including temperature, SoC and C-rate
— can often be estimated with more accuracy during
design. Battery system design optimization for HDBEVs
thus requires parametric mathematical models of battery
aging, estimated from real-world cycling and storage
tests. The purpose of this article is to address this
concern.

In this article, a Semi-Empirical Model (SEM) is
proposed for estimating the capacity loss (Closs) for
different LIB chemistries during cycling and calendar
aging. The model is developed based on the effect
of four different parameters, namely temperature, time,
depth of discharge, and C-rate current. The model is
able to estimate the Closs of LIBs with a high accuracy
and low computation complexity compared to the other
models. This model can be used for optimizing LIB sys-
tems for different chemistries throughout their lifetime
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Figure 1: Capacity Loss Estimation methods.

in realistic operation conditions. The contribution of this
article is elaborated in the next section.

RELATED WORK
LIB degradation is usually measured by Closs. It re-

flects the ability of the LIB to store and to supply energy
relative to its initial conditions, considering the energy
and power requirements of the application (Berecibar
et al., 2016). Many different methods for the Closs

estimation were presented in recent years and in general
they can be divided into three approaches, which are
shown in Figure 1.

The measurement based methods by themselves can-
not be used for the estimation of the Closs during design
of the battery system as these methods requires the
analysis of the measured data during operation of the
LIB.

The data-driven approach includes methods, where
the previously collected information about operation of
the LIB is used to find the dependency between the
collected information and Closs. Different algorithms
such as Support Vector Regression algorithm (Liu et
al., 2020), Fuzzy logic (Yang et al., 2020) and Neural
Networks (Naha et al., 2020) were investigated for Closs

estimation. These methods allows to estimate the Closs

with good accuracy in case of the availability of a
sufficient amount of previously collected data. However,
these methods are computationally intensive and are
sensitive to the size and quality of the experimental
dataset applied during the training, which are not always
available.

The model-based approach (Cacciato et al., 2016)
may yield better results for the Closs estimation in case
of the low amount of the experimental data. It can
be done by applying a model, which should describe
the processes occurring in the LIBs. Such models can
be used offline and they directly provide the required
information on the Closs — or the required information
can be obtained during comparison of the calculated and
measured data in real time. If a very high accuracy
for the Closs estimate is needed, the second type of
the battery model, so called adaptive model (Cen &
Kubiak, 2020), is often recommended in the literature.
The adjustment of the adaptive model parameters and
Closs estimation after comparison with measured data
can be done by using such algorithms as Kalman Filter,
Particle filter, Sliding mode observer etc. As it was
reported by (Andre et al., 2013), the use of the adaptive
models allows to estimate Closs and State of Charge
(SoC) simultaneously with estimation error under 1%.

Despite the high accuracy of the Closs estimation, a high
computational complexity may limit the applicability
of the adaptive models during battery system design
where high accuracy is not always necessary. In this
case, offline models such as SEM (Singh et al., 2019)
may be more useful as they may estimate the Closs

with acceptable uncertainty in case of the lack of the
experimental data and they have low computation com-
plexity. In the SEM approach, one attempts to identify a
(simple) parametric function that describes the capacity
reduction, through parametric optimization.

The applicability of the SEM approach for the Closs

estimation during storage (Grolleau et al., 2014) and
cycling (Bocca et al., 2015) were widely shown for
different LIBs. However, the presented models were
usually verified for the same LIBs, from which the SEMs
were created and the use of the presented algorithms
for the creation of the SEMs for other type of the
LIBs is not well discussed. Therefore, the research work
described in the present article focused on the analysis
of the applicability of the commonly used approach for
the creation of the SEMs of different LIBs at different
operation conditions.

SEM SPECIFICATIONS

In this article the most commonly used models,
which can estimate the capacity loss Closs of the LIBs
during Calendar Aging Ccal

loss and Cycling Aging Ccyc
loss

are analysed. These semi-empirical models were previ-
ously used for the modeling of the Closs in LFP cells
(Wang et al., 2011), NMC cells (Schmalstieg, Käbitz,
Ecker, & Sauer, 2014), NCA cells (Petit, Prada, &
Sauvant-Moynot, 2016) and they are briefly described
below.

Calendar Aging

The two main factors that affects the Calendar Aging
are the T and SoC. The general equation for the
Calendar Aging estimation can be presented as:

Ccal
loss = B(SoC) · e−

E
R(T−Tref ) · tz, (1)

where B is the pre-exponential factor that depends on
SoC, T is the temperature expressed in K, Tref is the
reference temperature also expressed in K and is equal to
298.15, R is the gas constant, E is the activation energy
of a reaction, expressed in J/mol, t is the time in days,
and z is a constant. The pre-exponential factor B can
be presented as:

B = a1 · SoC + a2 (2)

Where a1 and a2 are fitting constants. Equation 1 can
be used to estimate the Closs of the LIB during long
period storage.

Cycling Aging

For Cycling Aging, the Closs is mainly affected by
current I , T and number of cycles N . Furthermore, other
parameters do have a margin effect depending on the
temperature of the LIB, e.g. depth of discharge DoD,
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and the rated capacity. The general equation used to
estimate the Ccyc

loss is as follow:

Ccyc
loss = Bcyc(I) · e

− E+α·|I|
R(T−Tref ) ·Azcyc

h (3)

Where Bcyc is a pre-exponential factor which depends
on cycling current I , α and zcyc are the fitting coef-
ficients, and Ah is the full used capacity that can be
obtained using the following equation:

Ah = FCE · Cr = N ·DoD · Cr (4)

Where FCE is the full cycle equivalent, Cr is the rated
capacity.

MODEL IDENTIFICATION
The process of model identification is divided into

two parts; (a) Data Selection and Fitting, and (b) Model
Validation. These two parts are illustrated in Figure 2.

Start

Obtain the measured
data required for
the fitting process

Start fitting process

Does the model
fit the data well?

Obtain the fitting
parameters

End

(a)

Yes

No

Start

Obtain the measured
data required for the

validation process

Use the fitting
parameters obtained

from the fitting process

Calculate the
estimated Ccal

loss
and Ccyc

loss

Calculate the
error between

the measured and
estimated Closs

Is the error
less than 5%?

Model is validated

End

(b)

Yes

No

Figure 2: SEM flowchart process; (a) Data Selection
and Fitting process, (b) Model Validation process.

Data Selection and Fitting
Figure 2 (a) shows the Flow Chart of the data

selection and fitting process. As shown in this Figure,
measured data from different references, specifically
the Ccal

loss, Ccyc
loss, FCE and Time are obtained. Af-

terwards the fitting process is applied to estimate the
value of the fitting parameters. The algorithm used for
obtaining the fitting parameters is shown in Algorithm
1. In this algorithm, Mes Ccyc

loss and Mes Ccal
loss are

Algorithm 1 Data Selection and Fitting process
Input: Mes Ccyc

loss, Mes Ccal
loss

Output: Est Ccyc
loss, Est Ccal

loss,R,a1,a2,z,α,zcyc,Bcyc

Body:

1: measured← {Mes Ccyc
loss,Mes Ccal

loss}
2: estimated← {Est Ccyc

loss,Est Ccal
loss}

3: for i← 1 to 1000 do
estimated← fitting(measured)
if estimated == localminimum then

Stop
end
end

4: error← avg.( estimated−measured
measured

)
5: if error < 0.05 then
{E,R,a1,a2, z, α, zcyc,Bcyc} ← fitpar(estimated)
end

the measured Closs data needed for fitting the model,
while Est Ccyc

loss and Est Ccal
loss are the estimated Closs

output. In this process, the fitting function is using
the fminsearch from MATLAB which uses a simplex
search method (Lagarias et al., 1998) to obtain the
estimated data output. In order to decrease the overall
error between the measured and the estimated output,
the fitting function is proceed in different scenarios, e.g.
during a fixed temperature, fixed DoD = 1 − SoC,
etc., for 1000 iteration in each. For this, several fitting
parameters are calculated according to each situation.
Once the estimated output reaches the local minimum,
the average error is calculated between the estimated
output and the measured data. In this case, it’s assumed
that 5% is when the model does fit the data well.
Afterwards, function fitpar which uses the polyfit
from MATLAB is used to generate the fitting parameters
based on least square regression. Once these values are
calculated, the model validation process is started as
shown in Figure 2 (b).

Algorithm 2 Model Validation process
Input: NewMeasuredData
Output: Ccyc

loss, Ccal
loss

Parameters: R,a1,a2,z,α,zcyc,Bcyc,Tref

Body:

1: {SoC,T, I, t,N,period,Cr} ← NewMeasuredData

// Calculate Closs for Cycling Aging

2: cyc.DoD, cyc.SoC, ch1, ch2← rainflow(SoC);
cyc.I← avg. I from ch1 to ch2;
cyc.T← avg.T from ch1 to ch2;

3: Ccyc
loss ← Bcyc · e

− E+α·|cyc.I|
R(cyc.T−Tref ) · (NCr(cyc.DoD))zcyc

// Calculate Closs for Calendar Aging
4: if I == 0 then

cal.SoC = avg. (SoC);
cal.T = avg. (T);
cal.t = period ∗ 24 ∗ 3600;
B(SoC) = a1 · cal.SoC+ a2 ;

Ccal
loss ← B(SoC) · e

− E
R(cal.T−Tref ) · cal.tz

end

Model Validation

In this process, the estimated fitting parameters val-
ues are input into Equations (1)-(4), to calculate the
Closs during Cycling/Calendar aging, and the output
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is compared to a known reference, where the error is
calculated between the known Closs and the estimated
one. If the error is low (here defined as below 5%), this
shows that the model is validated and can be used to
estimate the Closs of an experimental LIB.

The method used for calculating the Closs is shown
in Algorithm 2. The information about state of charge
SoC, temperature T , current I , rated capacity Cr and
time between operation cycles is necessary for the Closs

calculation t. The loss of the capacity during cycling is
calculated from information about N , cycle start time
ch1 and end time ch2, average values of cyc.DoD and
cyc.SoC that are calculated from SoC curve by using
Rainflow algorithm in MATLAB (ASTM E1049-85,
2005). Afterwards, average values of temperature cyc.T
and current cyc.I . are calculated during a cycle to be
used in Equation 3. The calendar Closs is calculated
by considering the average state of charge cal.SoC and
average temperature cal.T of each long enough period
of time when LIBs are not used where there is no current
usage during this period.

RESULTS
To test the feasibility of the proposed model, several

LIB chemistries should be evaluated. In this work,
two different chemistries of LIBs have been chosen;
Lithium Iron Phosphate (LFP) and Lithium-Titanate
Oxide (LTO). These chemistries are among the primary
candidates for modern HDBEV systems.

Lithium-titanate battery (LTO)

Data Selection and Fitting

The measured data that is used for the fitting process
is acquired from (Dubarry & Devie, 2018). In his work,
he studied the effect of temperature ’T ’, SoC swing
range ’4SoC’, and C-rate ’C’ on the battery cells to
measure its Closs during 1400 (1C rate) to 4200 (3C
rate) full cycle equivalent as demonstrated in Figure 3(a).
Likewise, he studied the effect of ’T ’ and SoC through
61 weeks of Calendar Aging as illustrated in Figure 3(b).

Once the measured data from Figure 6 is extracted,
the fitting process is started. The fitting function for the
Cycling Aging is proceed in four different scenarios:
during a fixed DoD(40%), fixed temperature (25°C),
and fixed C-rate. Figure 4 shows the estimated Closs

(dashed line) compared to the measured one (solid line).
The average error between the estimated Closs and
measured Closs is found to be 0.63% at 50% of FCE
and 0.54 at 100% of FCE, except for one point that
shows an error of 0.72% during the 4200 FCE that can
be found in Figure 4(d) (45/0.7/3).

In the Calendar Aging fitting process, the model has
an average error of 0.8% between the estimated Closs

(dashed line) and the measured one (solid line), except
for the condition T = (55°C), SoC = 5%, as the model
does have an average error of 1.4% during this condition.

The results from the literature shows that during
Calendar Aging, the LTO tends to degrade faster while
the SoC is low compared to higher SoC, in addition to
the effect of T . For Cycling Aging, the increase in T and

C-rate has significant effect on the LTO chemistry, and
the degradation rate is faster when smaller SoC swings
4SoC is applied.

Model Validation

In order to test the performance of the proposed
model, it needs to be validated and compared to another
known measured Closs during cycling and Calendar
Aging. For the Cycling Aging, the input data needed for
the Closs algorithm is extracted from (Baure & Dubarry,
2020), and the output is compared to the Closs from
the same reference. Table 1 and Table 2 first columns
show a summary of the extracted data that is required
for the Cycling Aging Closs. Furthermore, both tables
show the measured Closs in 25/35°C, estimated Closs

and the error during 2500 equivalent cycles.

As shown in Table 1, the model does have an
average error of 0.46% during Cycling Aging in 25°C,
while it does have an average error of 1.39% in 35°C
as shown in Table 2.

Table 1: Data validation during Cycling Aging
measured in 25°C

Data cycling
measured
in 25 °C

Measured
Capacity
Loss %

Estimated
Capacity
Loss %

Error %

Median SoC = 15%,
4SoC = 5% 0.37 0.69 0.32

Median SoC = 50%,
4SoC = 5% 0.33 0.69 0.36

Median SoC = 85%,
4SoC = 5% 0.33 0.69 0.36

Median SoC = 15%,
4SoC = 45% 0.42 1.07 0.65

Median SoC = 50%,
4SoC = 45% 0.40 1.07 0.67

Median SoC = 85%,
4SoC = 45% 0.48 1.07 0.59

Median SoC = 50%,
4SoC = 75% 0.41 0.71 0.30

Table 2: Data validation during Cycling Aging
measured in 35°C

Data cycling
measured
in 35 °C

Measured
Capacity
Loss %

Estimated
Capacity
Loss %

Error %

Median SoC = 15%,
4SoC = 5% 0.54 1.60 1.06

Median SoC = 50%,
4SoC = 5% 0.58 1.60 1.02

Median SoC = 85%,
4SoC = 5% 0.54 1.60 1.06

Median SoC = 15%,
4SoC = 45% 0.62 2.48 1.86

Median SoC = 50%,
4SoC = 45% 0.59 2.48 1.89

Median SoC = 85%,
4SoC = 45% 0.70 2.48 1.78

Median SoC = 50%,
4SoC = 75% 0.58 1.62 1.04

For the Calendar Aging, the required data is extracted
and compared to the measured Closs in (Dubarry et al.,
2018). Table 3 shows a summary of the extracted data
from this reference. To estimate the Closs per 1 month,
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(a) Capacity Loss as a function of FCE (b) Capacity Loss as a function of storage time

Figure 3: LTO measured Capacity Loss during Cycling and Calendar Aging (Dubarry & Devie, 2018).

(a) Capacity Loss estimated output during a fixed DoD(40%) (b) Capacity Loss estimated output during a fixed T (25C)

(c) Capacity Loss estimated output during a fixed C − rate(2C) (d) Capacity Loss estimated output during a fixed C − rate(3C)

Figure 4: LTO estimated Capacity Loss during Cycling Aging.

Figure 5: LTO estimated Capacity Loss during
Calendar Aging.

fitlm from MATLAB is used to fit a linear regression
model to obtain this value. Afterwards, the number of
days is calculated and used as an input to the developed
model. Table 3, 4th column shows the error between

the estimated Closs and the measured one. The model
does have an average error of 1.98% in Calendar Aging.

Table 3: Data validation during Calendar Aging

Temperature
°C SoC % Capacity Loss

(%/month) Error %

-27 5 0.28 2.03
-27 99 0.28 1.95
25 50 0.05 0.67
25 100 0.05 0.68
45 20 0.76 2.74
45 70 0.24 1.76
55 5 3.97 3.37
55 81.5 0.73 2.67

Lithium iron phosphate battery (LFP)
Data Selection and Fitting

The measured data required for the fitting process
during Cycling Aging is obtained from (Wang et al.,
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(a) Capacity Loss as a function of FCE (Wang et al., 2011) (b) Capacity Loss as a function of storage time (Naumann et al., 2018)

Figure 6: LFP measured Capacity Loss during Cycling and Calendar Aging.

(a) Capacity Loss estimated output during a fixed DoD(50%) (b) Capacity Loss estimated output during a fixed T (60C)

(c) Capacity Loss estimated output during a fixed C − rate(0.5C) (d) Capacity Loss estimated output during a fixed C − rate(10C)

Figure 7: LFP Estimated Capacity Loss during Cycling Aging.

Figure 8: LFP Estimated Capacity Loss during
Calendar Aging.

2011). In his work, he measured the Closs during
Cycling Aging in the following conditions; five different
temperatures (0, 15, 25, 45, 60 °C), four levels of
DOD (90%, 80%, 50%, and 10%), and four discharges
rates (C/2, 2C, 6C and 10C). During discharge rate of

C/2, the authors results showed that at such low rate,
only temperature and FCE does have an effect on the
Closs, while DoD has a negligible effect on it. For the
Calendar Aging Closs, measured data was acquired from
(Naumann et al., 2018), where the researchers studied
the effect of different storage temperatures at the storage
SoC = 0%,50%, and 100%.

Afterwards, the fitting process for the Cycling Aging
is carried on. Similar to the LTO chemistry, the fitting
process is proceed in four different scenarios; During a
fixed DoD(50%), fixed temperature (60°C), and Fixed
C-rate (0.5C and 10C). Figure 7 shows the estimated
Closs (dashed line) compared to the measured one (solid
line). The average error is found to be 0.43% at half the
FCE for each point, and 0.54% at the total FCE.

During the Calendar Aging process, the model has
an average error of 0.45% at 450 days between the
estimated Closs (dashed line) and the measured one
(solid line), and 0.67% at 900 days.
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From the literature, it can be concluded that during
Calendar Aging, the LFP chemistry degradation rate
remains constant with SoC at given T , which means
the Closs is affected more by T and for the Cycling
Aging, the Closs is strongly affect by T and t on the
LFP chemistry, while the DoD has almost a negligible
effect especially at low C-rate (0.5C). In contrast,

Model Validation

In this section, the model is validated by comparing
the estimated Closs output to other known measured
Closs. For Cycling Aging, data needed to estimate the
Closs and compare it to a measured one is obtained from
(Marongiu et al., 2015). Table 4, first column shows a
summary of the data that used to estimate the Cycling
Aging Closs. The value of the battery temperature is kept
at 30°C, and FCE is ranged from 1700 up to 5000.

As can been seen in Table 4, the model estimated
Closs error ranges from 1.2% to 1.8%, with an average
error of 1.15%.

To validate the model in Calendar Aging, the
same method for obtaining the required data as been
used with LTO is used, and data is extracted from
(Dubarry et al., 2018) . Table 5 shows a summary
of the extracted data from this reference and the
calculated error between the estimated Closs during
Calendar Aging and the measured one. The model
does have an average error of 1.83% in Calendar Aging.

Table 4: Data validation during Cycling Aging
measured in 30°C

Data cycling
measured
in 30°C

Measured
Capacity
Loss %

Estimated
Capacity
Loss %

Error %

SoC=90%, 1C 19.7 18.5 1.2
SoC=50%, 1C 17.3 18.5 1.2
SoC=20%, 1C 6.2 7.6 1.4
SoC=90%, 3C 36.6 34.9 1.7
SoC=50%, 3C 27.9 26.6 1.3
SoC=20%, 3C 56.3 54.5 1.8
SoC=90%, 6C 15.1 13.8 1.3
SoC=50%, 6C 68.1 66.7 1.4
SoC=20%, 6C 38.6 37.1 1.5

Table 5: Data validation during Calendar Aging

Temperature°C SoC % Capacity Loss
(%/month) Error %

0 50 0.40 0.5
10 50 0.52 0.6
20 100 1.37 1.1
25 40 1.30 1.4
30 65 0.97 2.1
40 30 1.79 1.5
45 100 3.72 2.3
50 20 3.19 4.1
60 0 1.78 2.9

Application example
After presenting, identifying and validating the bat-

tery capacity degradation model using two different
types of LIBs, an attempt to predict the capacity degra-
dation using simulated duty cycle data for a Mining

Figure 9: Simulated battery duty cycle data of a
Mining Dumper.

Dumper based on (Immonen, 2003) work, is carried
out. In this example, both LTO and LFP batteries are
assumed to follow the same duty cycle, given in Figure
9 for Cycling Aging estimation, followed by 2 hours
rest time during which the battery is cooled to the initial
temperature (linear temperature decay) for the Calendar
Aging estimation.

The battery system was simulated for 1000 repeated
duty and rest cycles (described above) for both LTO
and LFP chemistries. The required data for predicting
the capacity loss, found in Figure 9, was then fed to
the proposed SEM. The results show that, for the LFP
chemistry, Ccyc

loss = 3.1%, and Ccal
loss = 8.31%. On the

other hand, for the LTO chemistry, Ccyc
loss = 5.2% and

Ccal
loss = 2.22%, indicating a clear difference in the aging

profiles of the two battery chemistries.

CONCLUSIONS

In this work, a SEM for estimating the Closs of dif-
ferent LIBs during Cycling Calendar Aging for different
operation condition has been developed. For modeling,
different LIB measurement data is required for obtaining
the models’ fitting parameters. Afterwards, the model is
validated by comparing the estimated Closs to a known
one. Results show that the proposed model is able to
estimate the Closs during Cycling and Calendar Aging of
two different LIBs (namely LTO and LFP chemistries)
with a high accuracy with a brief explanation of the
effect of different parameters on the two LIBs. Fur-
thermore, a simulated battery duty cycle of a Mining
Dumper has been used to estimate the Closs during
Cycling and Calendar Aging of a Mining Dumper.

The proposed model can be used in case of the
lack of the experimental data, where it can give out
an acceptable accuracy while having low computation
complexity and is simpler to implement in compari-
son to other model-based approaches. For instance, the
developed SEM has an average error of 2% between
the measured Closs and the estimated Closs, while the
adaptive-models do usually have an average error less
than 1%.

In the future, the proposed SEM framework should
be validated by studying different battery chemistries.
Another important topic left for future work is design
optimization — optimal cell chemistry selection in par-
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ticular — for HDBEVs, based on the proposed battery
degradation models.
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