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ABSTRACT 

Optimization of business processes in SOA systems has 

been done using three separate types of methods: 

Resource Allocation, Service Scheduling and Service 

Composition. All three may influence each other, so the 

new method has been proposed to find an optimal 

combination of those three. It is based on a genetic 

algorithm that uses a simulator of the SOA system to 

evaluate solutions. The article describes a model for the 

optimization criteria for such solutions. Subsequently, 

some basic concepts used to implement the simulator and 

optimizer have been presented. Finally, the performance 

results of the optimizer have been described, including 

the conclusions on how they might be improved.  

INTRODUCTION 

The optimization of the system performance has always 

been important. It is due to many reasons, but first and 

foremost due to the limitation of resources or drive to 

increase system performance. It is no different in the case 

of the Service-Oriented Architecture (SOA) systems. 

Nonetheless, there are a few differences in how the 

systems might be optimized. The differences are mainly 

caused by fragmentation of the SOA systems. To add 

value to such systems, many components must cooperate. 

Each component is a software module that may be 

implemented in a technology different than other 

components and deployed independently. The most 

important part of the SOA components is that they 

deliver services. A service is a function of a component 

that is usually provided through a www. Users get value 

out of the SOA system by invoking the so-called 

composite services or business processes which are 

sequences of services realized by components. 

The literature includes 3 types of methods for optimizing 

business processes in the SOA systems: Service 

Composition, Service Scheduling and Resource 

Allocation. Each of them is focused on a different stage 

of the SOA system implementation or execution. The 

first type is the Resource Allocation. It consists in 

determining which components should be deployed on 

which servers. Each component may be deployed 

simultaneously on many servers. Therefore, during 

Resource Allocation, it is also decided how many 

component instances should be running. Example of such 

a method uses Quality of Service (QoS) constrains and 

resource usage cost as an input (Almeida et al. 2006; 

Huang et al. 2016; Mennes et al. 2016). Then it searches 

for optimal allocation using Fixed Point Iteration 

technique. The second way of optimizing business 

processes in SOA is to use the Service Composition 

method, which is the most popular in the literature (e.g. 

Ebrahim 2011; da Silva et al. 2015; Zhao et al. 2017; 

Wang et al. 2011; Xianwen et al.  2009). This type of 

optimization method is used when a given service is 

available on multiple servers. Usually, it is because the 

component is deployed on many servers. The Service 

Composition method is about deciding which server 

should execute a service instance. Usage of genetic 

algorithm is very common in solving this problem. 

Example of such approach is presented by Ebrahim 

(Ebrahim 2011). He suggests using a genetic algorithm 

where the chromosome has a number of genes equal to 

the number of services that must be called in the process. 

Each gene indicates an instance of the service that should 

be called in the process. The best chromosomes are those 

that provide the best QoS with minimal cost of service 

and minimal diversity of suppliers. The third type of 

methods is Service Scheduling (Dyachuk and Deters 

2008). It is executed last and it is least popular in the 

literature. It may be used when multiple service 

invocations are organized in a queue of one component. 

Then it is possible to determine the order of their 

execution. For example, the Service Scheduling method 

presented in (Dyachuk and Deters 2007) finds services 

on a critical path of a business process and prioritizes 

them in the component queue.  

All of these three methods are considered independently 

in the literature, even though they influence each other. 

Different service composition methods may give best 

results on different allocations and service scheduling 

algorithms. It means that we should strive to optimize all 

three aspects. Such optimization concept is proposed in 

(Woźniak and Nowicki 2019). It is based on a SOA 

system simulator that is used to evaluate solutions. The 

simulator takes, as an input, the SOA system model, 

which includes: services, components, execution 

environments, servers, business processes, etc. Each of 

the above-mentioned elements should be described with 

attributes, such as a random variable resources (CPU and 

RAM) used by each service invocation. In addition to the 

model, the simulator takes, as an input, the matrix of 

resource allocation and selected algorithms of the Service 

Composition and Service Scheduling methods. During 

simulation, output values that constitute criteria for 

selecting the best solutions (out of those that were 

simulated) may be obtained. To search through solutions, 
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a genetic algorithm was used in combination with a brute 

force approach. It is a unique feature of the SOA system 

allowing to define the optimization criteria from the 

business process point of view, which will be 

subsequently translated into the infrastructure. The 

reason behind this is that in SOA, business processes may 

be mapped to services. The following optimization model 

is an extension of one presented in (Woźniak and 

Nowicki 2019). Its main difference from the three SOA 

optimization types of methods is that it takes into account 

that all of those three influences each other so it finds 

optimal three: resource allocation, service composition 

algorithm and service scheduling algorithm. 

 

OPTIMIZATION MODEL 

Several optimization criteria for business processes in the 

SOA system may be defined. They are focused on two 

aspects of the process: service quality for the user and 

costs for the company. The first two criteria are the 

following: 

1. Average execution time of business processes 

weighted by the expected number of instances 

of business process. 
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B – number of business processes, 

t – simulation time, 

X – analysed solution which consists: boolean matrix of 

allocation of components to servers (genotype), selected 

Service Scheduling and Service Composition algorithms, 

Hx(t) – expected value for the number of x-type business 

process instances running, 

CRi,b(t,X) – random variable denoting the time of 

implementation of the i-th instance of the b-th business 

process during t, 

LRb(t) – random variable denoting the number of 

completed instances of the bth business process during 

time t. 

2. Average variance of execution time of business 

processes 
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The costs criteria are included in the form of resources 

that are used by the system to calculate how they should 

be minimized. They are defined in the following manner: 

1. The expected amount of processor resources 

used to provide services over a given time t. 
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S – number of servers, 
ms –  computational power of the s-th server, 
tus(t,X) – random variable denoting the time spent 

by s-th server on processing services 

Y(s) –  function Y (s) takes the value 1 if any 

component is assigned to server s. 
2. expected utilization rate of allocated memory 

resources for the provision of services during t 
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ps – amount of RAM on s-th server. 

 

However, during the tests of optimizers, the 3k   criterion 

had two effects. The first one led to maximizing the use 

of a processor, which was beneficial. The second effect 

promoted the solutions that had long queues leading to 

longer execution times of business processes, which was 

unintended. The effect was partly nullified by the first 

criterion. However, to increase the convergence of the 

method, it was decided to replace it with a simpler one: 

The expected degree of utilization of allocated processor 

resources for the provision of services in a given time t 
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Furthermore, during the experiments, it was noticeable 

that some solutions with high evaluation scores, 

according to the above criteria, had many unrealized 

business processes. The process may be abandoned if a 

server does not have enough resources to realize it or is 

damaged. To solve that, the another criterion was added: 
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rb(t,X) –  random variable denoting the number of 

unrealized instances of a b-th type process. 

Therefore, the target function of such optimization may 

be defined as: 
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Not all component allocations are acceptable solutions. 

At least three restrictions on the solution should be 

defined: 

Restriction 1. Processor. The server processor power 

should exceed its consumption as resulting from the 

operations of the components and execution 

environments. 
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where: 

K – number of components 

Kk,s – binary value whether the k component has been 

assigned to the server s 

Mk – amount of processing power consumed by k-th 

component 

SU – number of execution environments, 

Ssu,s – binary value whether the su-th execution 

environment has been assigned to the server s, 

MUk – amount of processing power consumed by su-th 

execution environment. 

 

Restriction 2. RAM. The server RAM resources should 

exceed its consumption as resulting from the operations 

of the components and execution environments.  
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where: 
Pk – amount of RAM consumed by k-th component 

PUsu – amount of RAM consumed by su-th execution 

environment 

 

Restriction 3. At least one instance of each component 

should be deployed.  
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SIMULATOR IMPLEMENTATION 

To evaluate the solutions using the above criteria, the 

simulator of the SOA system was implemented in Java 

language with the DISSim library. DISSim is a toolset for 

developers that allows to perform discrete event 

simulation. It uses BasicSimObject class for every 

element that is simulated and generates events in 

simulation time. The second class is BasicSimEvent that 

is put on simulation calendar. A simulation engine 

searches through the calendar and picks up the nearest 

event. Every event has a code attached thereto that is 

executed when the simulation time comes.  

 

Class Model of the Simulator 

The BasicSimEvent and BasicSimObject classes are 

abstract. The latter is a parent object to the Organization 

and Server classes (Figure 1). The organization starts and 

contains instances of business processes that are 

specified by the Business Process Definition. The 

business process is defined as a graph, in which each step 

is a service. All services in the process are interconnected 

by arches described with the probability of choosing each 

path (which reflects the operation of the gates in BPMN). 

The services are described by the processor power, the 

RAM they need for their operations and the volume of 

data that should be sent through the network to provide 

the service. The services are associated with the 

components that execute them. The components contain 

a list of execution environments on which they can run. 

The components and execution environments are run on 

a server, which is a simulation object. They are described 

by the processor power and RAM memory necessary for 

their operations. The servers have specified amount of 

the processing power and RAM needed to run the 

components and execution environments as well as to 

provide the services. In addition, the servers are 

described with a matrix of network bandwidth between 

them. What is more, each server class object contains 

random variables that indicate the time of its damage and 

repair. Server damage events are created after starting the 

simulator in random time according to the random 

variable assigned to the server. When a server damage 

event occurs, the server’s status is changed to inoperative 

and a server repair event is generated at a random time 

from the time of failure. The repair event generates the 

damage event, etc. 

 

Figure 1 Class  Model of the Simulator 
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Simulation Process 

Creating the Business Process Instance 

The events in the simulator are interdependent, and the 

logic of their occurrence is presented in Figure 2. After 

running the simulation, the "cyclic invocation of  

business process instance" events are generated. There is 

one event for every business process definition. It 

represents the creation of a new business process 

instance. 

Once the simulation time reaches the event time, a new 

process instance and a new calendar event are created and 

will occur for the randomly generated simulation time. 

The time between the successive process start events is 

established according to the random variable specified in 

the business process definition. 

 

Business Process Realization 

When the business process instance is created, its first 

step with the current simulation time is generated. Each 

event representing a step in the business process aims at 

invoking the services to accomplish such step. First of all, 

a server is appointed to execute the service. It is the 

operation of the load balancer, which consists in the 

selection of the correct instance of the component, i.e. 

implementation of the Service composition algorithm. 

Two Service Selection strategies have been implemented 

in the simulator: 

• select least loaded server, 

• select server with the shortest expected response time. 

It is possible to add further Service Composition 

algorithms to the simulator. If a server capable of 

performing the step in the process is not found, then the 

process is terminated and the information about the 

Figure 2 Simulation Process of the SOA System 
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system’s inability to implement the process is included in 

the simulation results. 

 

Service Execution 

If the load balancer has found the server capable of 

providing the service, i.e. the server that: 

• has enough free RAM memory, 

• has a component capable of providing the service, 

a service order is created. The time necessary for the 

service to be completed is the sum of: 

• data transfer through the network, 

• service execution time on the server. 

The transfer time depends on the volume of data to be 

transferred, as defined in the service, and the network 

bandwidth. The execution time depends on: 

•  the processor power allocated by the server to execute 

the services, 

• the number of services invoking the orders,  

• the power needed to perform the services, 

• the component operation model (FIFO or Time 

Sharing).  

If the component operates in the time-sharing mode, then 

each appearance of a new service to be executed and each 

termination of the service require recalculation of the 

expected service realization times. 

 

Business Process Step Execution 

The completion of the service creates a step completion 

event in the business process. Its aim is to determine the 

next steps. It may cause the termination of the process or 

creation of start events for one or more steps. If one of 

the XOR, OR or AND gateways was used after the step 

in the business process, then such step is interrelated with 

many other subsequent steps. Each relationship is 

described by the probability of path selection for XOR 

and OR gates. In case of the XOR gate, exactly one next 

step in the process is selected within the probability of 

the relations that add up to 1. In case of the OR gate, the 

probability of each path is calculated independently. 

Their sum may be greater than 1, hence, one or more of 

the following steps may be chosen. For the AND gate, all 

of the following steps are always run. The same is true 

for connecting gates (before the step) - in this case, it is 

essential to first complete one or more of the previous 

steps before starting the next step. 

The above-described process is executed for every 

instance of the business process that can occur in large 

numbers. Simulation is performed for a fixed simulation 

time defined as a parameter before its beginning.  

 

OPTIMIZER IMPLEMENTATION 

Population Initiation 

The optimizer is based on multiple simulations organized 

in a genetic algorithm and the brute force algorithm. The 

brute force algorithm is a loop that executes the genetic 

algorithm for each combination of the Service 

Composition and Service Scheduling methods. The 

genetic algorithm is used to find optimal resource 

allocation for the Service Composition and Service 

Scheduling methods. The genetic algorithm starts with 

the generation of the population of genotypes. A 

genotype is a Boolean matrix that shows allocation of 

components to servers, where 1 indicates that the 

component has been allocated to the server. To generate 

an initial population, two layers of randomness are 

applied. The first one is the generation of numbers 

between 0 and 1 for each genotype. The number 

represents the probability of allocation. The second layer 

is randomization of 0 or 1, which shows whether the 

component is allocated to the server. This randomization 

is done with the probability of allocation from the first 

layer. In this way, not only different allocations are 

analyzed, but also solutions with different density of 

allocation.  

After the generation of the initial population, it is 

necessary to adjust the solutions so that all restrictions are 

met. To that end, the genotypes that do not meet the first 

two restrictions are selected. Subsequently, the loop is 

executed for each server that is overloaded. Within each 

iteration of the loop, the randomly selected components 

and their execution environments are removed from the 

server allocation. The process continues until the server 

is not overloaded anymore. To guarantee that the third 

restriction is met, all genotypes that have at least one 

component not allocated to any server are selected. 

Thereupon, in case of each such component, a randomly 

selected server having enough resources to handle it is 

allocated. 

 

Solution Evaluation and Selection 

To evaluate the solutions, each genotype is simulated. 

Each genotype is simulated multiple times to minimize 

the influence of randomness. During the simulation, the 

values of every decision criterium are subject to 

measurement. The criterion evaluation is averaged across 

multiple simulations of the same solution. After all 

solutions within a given population have been simulated, 

the ideal solution with the best values in each criterion in 

the population is formulated. The ideal solution is 

hypothetical. It is used as reference to evaluate other 

solutions. The values of all solutions in all criteria are 

normalized, where 0 constitutes the criterion value of the 

ideal solution and 1 - the worst value ever found. 

Subsequently, the distance from a given solution to the 

ideal one is calculated using the Euclidean metric. Best 

solutions are those that are closest to the ideal solution. 

The next step is the selection process. To do that, 

genotypes are sorted from best to worst. Survival chances 

are allocated to all solutions linearly, where the best 

solution has the probability of survival to the next 

population equal to 1. The worst solution has the 

probability of 0. The solutions are eliminated from the 

population according to the probability assigned thereto. 

 

Crossover and Mutation 

The final steps of the genetic algorithm are crossover and 

mutation. During the crossover, new solutions are 

generated. Each new genotype has two parents randomly 
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selected. The probability of being selected is higher in 

case of better solutions. The weight of being picked as a 

parent is the same as the probability of survival in the 

previous step. Each pair of parents has two children. The 

genes of the children are randomly picked from one of 

the parents. If the first child inherited a gene from one 

parent, then the second child inherits it from the other 

parent. Next, new genotypes are undergoing mutation. 

There is a small probability that each gene will be 

mutated. Mutation is changing the value of a gene from 

0 to 1 or from 1 to 0. This is to broaden the spectrum of 

the solutions searched. Finally, to ensure that all 

restrictions on solutions are met, the same algorithm as 

in case of the population initiation is performed.  

 

PERFORMANCE 

The presented optimizer was used to find solutions to 

multiple problems. To test convergence, the same 

problem was optimized with multiple times using 

different seeds. Convergence depends on the following 

parameters: 

• number of genetic algorithm iterations, 

• size of population, 

• variance of the simulation output data (which may be 

minimized by increasing the simulation time and number 

of repetitions), 

• size of the problem (number of: servers, components, 

business processes, etc.). 

The values of such parameters may be increased to 

achieve better convergence, but it would also make the 

optimization time longer. In the end it all comes down to 

the processing power and time. The more we have of 

those, the better convergence may be achieved.  

The simulation time is not only dependent on how long it 

has to be processed, but also on how many events must 

be executed in the environment. The number of events 

depends on the number of business processes and their 

two attributes:  

• expected value of a random variable of time between 

business process invocations, 

• expected number of steps in a process to complete it. 

Furthermore, there is one more value that has great 

impact on the simulation time. It is the ratio of load 

generated by the processes to available resources. The 

more load generated by the processes in comparison with 

the available resources, the longer service queues on the 

components. When the service instance is executed, the 

estimated execution times of all other service instances 

are updated. In case of a long queue, a lot of services have 

to be updated. According to the data gathered by a Java 

profiler, the service instance updating the process may 

consume up to 90% of the computation power provided 

to the optimizer. In case of a very short queue (shorter 

than 1 on average), it does not consume so many 

resources and the simulation process may be performed 

up to 10 times faster. Additionally, during experiments, 

it turned out that with short queues, the Service 

Scheduling algorithm of the optimal solution had a very 

low convergence. It is almost as if it was selected 

randomly. The reason for this is that when the queue is 

short, then the Service Scheduling algorithm has nothing 

to optimize. 

Table 1 shows the execution times on different 

parameters for the problem that comprises: 100 business 

processes and an average of 17.5 steps needed for their 

execution. Each business process definition had an 

average time between launches in a range of 1 to 500. 

This average time was a parameter for calling subsequent 

instances of business processes with exponential 

distribution. However this average time between 

business process instances was subject to changes in 

different simulation variants. The services were assigned 

an average execution time on a standard processor from 

5 to 120 (note that one server has multiple processors so 

real execution time can be much shorter). This value was 

an input parameter for the execution time of individual 

service instances that were randomized according to the 

normal distribution (both the average time and standard 

deviation). The simulation length was 2000 time units. 

Every solution was simulated 10 times to evaluate the 

values of its decision criteria. There was 3·10^6 solutions 

searched. Each solution had resource allocation problem 

size of 50 components allocated to 30 servers. The ratio 

between the resources required by the processes and the 

resources available on servers were from 2 to 1 (note that 

not all servers are used to minimize the resources 

consumed in the optimal solution). Optimization has 

been done on virtual machine with 3 Intel Xeon E5-2640 

2.60 GHz virtual cores.  

 

Table 1. Optimization times of problems with different 

amount of business process instances 

Average 

time 

between 

invocations 

Average 

number of 

events in 

simulation 

Total 

optimization 

time (days) 

Average 

time of 

evaluation 

of 1 

solution 

(seconds) 

10 350000 15,202 0,438 

20 175000 8,445 0,243 

40 87500 6,110 0,176 

 

The differences in values of decision criteria between the 

variants varied between 1% and 15%, except for the 

variance of the business process execution time, which 

differed between 18% and 47%. Best convergence (1% 

defference between best solutions of different seeds) had 

been achieved when optimization was performing for 60 

days for a problem of same size as presented above.  

Another experiment was also carried out on the same 

problem, but with different population sizes and the 

number of iterations as shown in table 2. Each 

experiment was repeated five times, and the results of the 

time of each repetition are shown in Figure 3. The results 

show that the number of iterations in the proposed 

solution has a much greater impact on simulation time 

than the size of the population. Experiment 4 was carried 

out much longer than experiment 3 despite the need to 

review the same number of solutions. The reason for this 

may be greater optimization convergence with the 
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parameters of experiment 3 and thus a greater proportion 

of simulations closer to optimal, which require less 

computing power. Concept to combine all three types of 

optimization methods of business processes in SOA is 

new so it is impossible to compare those results to others. 

 

Table 2. Parameters of experiments 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Iterations 5 000 5 000 5 000 10 000 

Population size 100 150 200 100 

 

 
Figure 3 Execution time (days) of each experiment 

repetition. 

SUMMARY 

The results of the proposed method may be interpreted 

dually. On one hand, it may give optimal solutions with 

high convergence, but on the other, it greatly depends on 

the resources and the problem size. To optimize it, greater 

utilization of multi-threading should be implemented in 

the simulator. Each simulation should be run as a separate 

thread. If further increase of its efficiency is needed, 

additional changes could be made. For example, each 

solution could be simulated on a different virtual 

machine. It is up to the user to decide if such efficiency 

of the optimizer is satisfactory. Still, the core of the 

optimizer would be same as described in the paper. What 

is more, with proper amount of time, it may have high 

convergence. As this method is new, it is impossible to 

compare it to other optimizers.  
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