

Implementation of the optimizer of SOA system deployment architecture
A. P. Woźniak

Military University of Technology

Institute of Computer and Information Systems

Ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland

E-mail: adrian.wozniak@wat.edu.pl

KEYWORDS

Service-Oriented Architecture, SOA, business process,

optimization, simulation

ABSTRACT

Optimization of business processes in SOA systems has

been done using three separate types of methods:

Resource Allocation, Service Scheduling and Service

Composition. All three may influence each other, so the

new method has been proposed to find an optimal

combination of those three. It is based on a genetic

algorithm that uses a simulator of the SOA system to

evaluate solutions. The article describes a model for the

optimization criteria for such solutions. Subsequently,

some basic concepts used to implement the simulator and

optimizer have been presented. Finally, the performance

results of the optimizer have been described, including

the conclusions on how they might be improved.

INTRODUCTION

The optimization of the system performance has always

been important. It is due to many reasons, but first and

foremost due to the limitation of resources or drive to

increase system performance. It is no different in the case

of the Service-Oriented Architecture (SOA) systems.

Nonetheless, there are a few differences in how the

systems might be optimized. The differences are mainly

caused by fragmentation of the SOA systems. To add

value to such systems, many components must cooperate.

Each component is a software module that may be

implemented in a technology different than other

components and deployed independently. The most

important part of the SOA components is that they

deliver services. A service is a function of a component

that is usually provided through a www. Users get value

out of the SOA system by invoking the so-called

composite services or business processes which are

sequences of services realized by components.

The literature includes 3 types of methods for optimizing

business processes in the SOA systems: Service

Composition, Service Scheduling and Resource

Allocation. Each of them is focused on a different stage

of the SOA system implementation or execution. The

first type is the Resource Allocation. It consists in

determining which components should be deployed on

which servers. Each component may be deployed

simultaneously on many servers. Therefore, during

Resource Allocation, it is also decided how many

component instances should be running. Example of such

a method uses Quality of Service (QoS) constrains and

resource usage cost as an input (Almeida et al. 2006;

Huang et al. 2016; Mennes et al. 2016). Then it searches

for optimal allocation using Fixed Point Iteration

technique. The second way of optimizing business

processes in SOA is to use the Service Composition

method, which is the most popular in the literature (e.g.

Ebrahim 2011; da Silva et al. 2015; Zhao et al. 2017;

Wang et al. 2011; Xianwen et al. 2009). This type of

optimization method is used when a given service is

available on multiple servers. Usually, it is because the

component is deployed on many servers. The Service

Composition method is about deciding which server

should execute a service instance. Usage of genetic

algorithm is very common in solving this problem.

Example of such approach is presented by Ebrahim

(Ebrahim 2011). He suggests using a genetic algorithm

where the chromosome has a number of genes equal to

the number of services that must be called in the process.

Each gene indicates an instance of the service that should

be called in the process. The best chromosomes are those

that provide the best QoS with minimal cost of service

and minimal diversity of suppliers. The third type of

methods is Service Scheduling (Dyachuk and Deters

2008). It is executed last and it is least popular in the

literature. It may be used when multiple service

invocations are organized in a queue of one component.

Then it is possible to determine the order of their

execution. For example, the Service Scheduling method

presented in (Dyachuk and Deters 2007) finds services

on a critical path of a business process and prioritizes

them in the component queue.

All of these three methods are considered independently

in the literature, even though they influence each other.

Different service composition methods may give best

results on different allocations and service scheduling

algorithms. It means that we should strive to optimize all

three aspects. Such optimization concept is proposed in

(Woźniak and Nowicki 2019). It is based on a SOA

system simulator that is used to evaluate solutions. The

simulator takes, as an input, the SOA system model,

which includes: services, components, execution

environments, servers, business processes, etc. Each of

the above-mentioned elements should be described with

attributes, such as a random variable resources (CPU and

RAM) used by each service invocation. In addition to the

model, the simulator takes, as an input, the matrix of

resource allocation and selected algorithms of the Service

Composition and Service Scheduling methods. During

simulation, output values that constitute criteria for

selecting the best solutions (out of those that were

simulated) may be obtained. To search through solutions,

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 41

a genetic algorithm was used in combination with a brute

force approach. It is a unique feature of the SOA system

allowing to define the optimization criteria from the

business process point of view, which will be

subsequently translated into the infrastructure. The

reason behind this is that in SOA, business processes may

be mapped to services. The following optimization model

is an extension of one presented in (Woźniak and

Nowicki 2019). Its main difference from the three SOA

optimization types of methods is that it takes into account

that all of those three influences each other so it finds

optimal three: resource allocation, service composition

algorithm and service scheduling algorithm.

OPTIMIZATION MODEL

Several optimization criteria for business processes in the

SOA system may be defined. They are focused on two

aspects of the process: service quality for the user and

costs for the company. The first two criteria are the

following:

1. Average execution time of business processes

weighted by the expected number of instances

of business process.

() ()()1 1, ,k t X E k t X=

where:

,

1
1

1

1

(,)
()

(,)
()

()

bLR

i bB
b i

B
b b

i

i

CR t X
H t

k t X
LR t

H t

=

=

=

 =

B – number of business processes,

t – simulation time,

X – analysed solution which consists: boolean matrix of

allocation of components to servers (genotype), selected

Service Scheduling and Service Composition algorithms,

Hx(t) – expected value for the number of x-type business

process instances running,

CRi,b(t,X) – random variable denoting the time of

implementation of the i-th instance of the b-th business

process during t,

LRb(t) – random variable denoting the number of

completed instances of the bth business process during

time t.

2. Average variance of execution time of business

processes
2

,

1
,

1

2

1

1

(,)

(,)
()

()
(,)

()
()

b

b

LR

LR i b

i
i b

i b

B
b

B
b b

i

i

CR t X

CR t X
LR t

H t
k t X

LR t
H t

=

=

=

=

 −

 =

The costs criteria are included in the form of resources

that are used by the system to calculate how they should

be minimized. They are defined in the following manner:

1. The expected amount of processor resources

used to provide services over a given time t.

() ()()3 3, ,k t X E k t X=

where:

()()

1
3

1

(,)

(,)

S

s s

s

S

s

s

m tu t X

k t X

m Y s t

=

=

=

S – number of servers,
ms – computational power of the s-th server,
tus(t,X) – random variable denoting the time spent

by s-th server on processing services

Y(s) – function Y (s) takes the value 1 if any

component is assigned to server s.
2. expected utilization rate of allocated memory

resources for the provision of services during t

() ()()4 4, ,k t X E k t X=

where:

()()4

1

(,)
S

s

s

k t X p Y s t
=

=

ps – amount of RAM on s-th server.

However, during the tests of optimizers, the 3k criterion

had two effects. The first one led to maximizing the use

of a processor, which was beneficial. The second effect

promoted the solutions that had long queues leading to

longer execution times of business processes, which was

unintended. The effect was partly nullified by the first

criterion. However, to increase the convergence of the

method, it was decided to replace it with a simpler one:

The expected degree of utilization of allocated processor

resources for the provision of services in a given time t

() ()()5 5, ,k t X E k t X=

where:

()()5

1

(,)
S

s

s

k t X m Y s t
=

=

Furthermore, during the experiments, it was noticeable

that some solutions with high evaluation scores,

according to the above criteria, had many unrealized

business processes. The process may be abandoned if a

server does not have enough resources to realize it or is

damaged. To solve that, the another criterion was added:

() ()()6 6, ,k t X E k t X=

where

6

1

(,) (,)
B

b

b

k t X r t X
=

=

rb(t,X) – random variable denoting the number of

unrealized instances of a b-th type process.

Therefore, the target function of such optimization may

be defined as:

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 42

() () () () () ()()1 2 4 5 6, , , , , , , , , ,k t X k t X k t X k t X k t X k t X=

Not all component allocations are acceptable solutions.

At least three restrictions on the solution should be

defined:

Restriction 1. Processor. The server processor power

should exceed its consumption as resulting from the

operations of the components and execution

environments.

, ,
(1,)

1 1

K SU

k s k su s su s
s S

k su

K M S MU m

= =

 +

where:

K – number of components

Kk,s – binary value whether the k component has been

assigned to the server s

Mk – amount of processing power consumed by k-th

component

SU – number of execution environments,

Ssu,s – binary value whether the su-th execution

environment has been assigned to the server s,

MUk – amount of processing power consumed by su-th

execution environment.

Restriction 2. RAM. The server RAM resources should

exceed its consumption as resulting from the operations

of the components and execution environments.

 , ,
(1,)

1 1

K SU

k s k su s su s
s S

k su

K P S PU p

= =

 +

where:
Pk – amount of RAM consumed by k-th component

PUsu – amount of RAM consumed by su-th execution

environment

Restriction 3. At least one instance of each component

should be deployed.

,
(1,) (1,)

1k s
k K s S

K

 =

SIMULATOR IMPLEMENTATION

To evaluate the solutions using the above criteria, the

simulator of the SOA system was implemented in Java

language with the DISSim library. DISSim is a toolset for

developers that allows to perform discrete event

simulation. It uses BasicSimObject class for every

element that is simulated and generates events in

simulation time. The second class is BasicSimEvent that

is put on simulation calendar. A simulation engine

searches through the calendar and picks up the nearest

event. Every event has a code attached thereto that is

executed when the simulation time comes.

Class Model of the Simulator

The BasicSimEvent and BasicSimObject classes are

abstract. The latter is a parent object to the Organization

and Server classes (Figure 1). The organization starts and

contains instances of business processes that are

specified by the Business Process Definition. The

business process is defined as a graph, in which each step

is a service. All services in the process are interconnected

by arches described with the probability of choosing each

path (which reflects the operation of the gates in BPMN).

The services are described by the processor power, the

RAM they need for their operations and the volume of

data that should be sent through the network to provide

the service. The services are associated with the

components that execute them. The components contain

a list of execution environments on which they can run.

The components and execution environments are run on

a server, which is a simulation object. They are described

by the processor power and RAM memory necessary for

their operations. The servers have specified amount of

the processing power and RAM needed to run the

components and execution environments as well as to

provide the services. In addition, the servers are

described with a matrix of network bandwidth between

them. What is more, each server class object contains

random variables that indicate the time of its damage and

repair. Server damage events are created after starting the

simulator in random time according to the random

variable assigned to the server. When a server damage

event occurs, the server’s status is changed to inoperative

and a server repair event is generated at a random time

from the time of failure. The repair event generates the

damage event, etc.

Figure 1 Class Model of the Simulator

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 43

Simulation Process

Creating the Business Process Instance

The events in the simulator are interdependent, and the

logic of their occurrence is presented in Figure 2. After

running the simulation, the "cyclic invocation of

business process instance" events are generated. There is

one event for every business process definition. It

represents the creation of a new business process

instance.

Once the simulation time reaches the event time, a new

process instance and a new calendar event are created and

will occur for the randomly generated simulation time.

The time between the successive process start events is

established according to the random variable specified in

the business process definition.

Business Process Realization

When the business process instance is created, its first

step with the current simulation time is generated. Each

event representing a step in the business process aims at

invoking the services to accomplish such step. First of all,

a server is appointed to execute the service. It is the

operation of the load balancer, which consists in the

selection of the correct instance of the component, i.e.

implementation of the Service composition algorithm.

Two Service Selection strategies have been implemented

in the simulator:

• select least loaded server,

• select server with the shortest expected response time.

It is possible to add further Service Composition

algorithms to the simulator. If a server capable of

performing the step in the process is not found, then the

process is terminated and the information about the

Figure 2 Simulation Process of the SOA System

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 44

system’s inability to implement the process is included in

the simulation results.

Service Execution

If the load balancer has found the server capable of

providing the service, i.e. the server that:

• has enough free RAM memory,

• has a component capable of providing the service,

a service order is created. The time necessary for the

service to be completed is the sum of:

• data transfer through the network,

• service execution time on the server.

The transfer time depends on the volume of data to be

transferred, as defined in the service, and the network

bandwidth. The execution time depends on:

• the processor power allocated by the server to execute

the services,

• the number of services invoking the orders,

• the power needed to perform the services,

• the component operation model (FIFO or Time

Sharing).

If the component operates in the time-sharing mode, then

each appearance of a new service to be executed and each

termination of the service require recalculation of the

expected service realization times.

Business Process Step Execution

The completion of the service creates a step completion

event in the business process. Its aim is to determine the

next steps. It may cause the termination of the process or

creation of start events for one or more steps. If one of

the XOR, OR or AND gateways was used after the step

in the business process, then such step is interrelated with

many other subsequent steps. Each relationship is

described by the probability of path selection for XOR

and OR gates. In case of the XOR gate, exactly one next

step in the process is selected within the probability of

the relations that add up to 1. In case of the OR gate, the

probability of each path is calculated independently.

Their sum may be greater than 1, hence, one or more of

the following steps may be chosen. For the AND gate, all

of the following steps are always run. The same is true

for connecting gates (before the step) - in this case, it is

essential to first complete one or more of the previous

steps before starting the next step.

The above-described process is executed for every

instance of the business process that can occur in large

numbers. Simulation is performed for a fixed simulation

time defined as a parameter before its beginning.

OPTIMIZER IMPLEMENTATION

Population Initiation

The optimizer is based on multiple simulations organized

in a genetic algorithm and the brute force algorithm. The

brute force algorithm is a loop that executes the genetic

algorithm for each combination of the Service

Composition and Service Scheduling methods. The

genetic algorithm is used to find optimal resource

allocation for the Service Composition and Service

Scheduling methods. The genetic algorithm starts with

the generation of the population of genotypes. A

genotype is a Boolean matrix that shows allocation of

components to servers, where 1 indicates that the

component has been allocated to the server. To generate

an initial population, two layers of randomness are

applied. The first one is the generation of numbers

between 0 and 1 for each genotype. The number

represents the probability of allocation. The second layer

is randomization of 0 or 1, which shows whether the

component is allocated to the server. This randomization

is done with the probability of allocation from the first

layer. In this way, not only different allocations are

analyzed, but also solutions with different density of

allocation.

After the generation of the initial population, it is

necessary to adjust the solutions so that all restrictions are

met. To that end, the genotypes that do not meet the first

two restrictions are selected. Subsequently, the loop is

executed for each server that is overloaded. Within each

iteration of the loop, the randomly selected components

and their execution environments are removed from the

server allocation. The process continues until the server

is not overloaded anymore. To guarantee that the third

restriction is met, all genotypes that have at least one

component not allocated to any server are selected.

Thereupon, in case of each such component, a randomly

selected server having enough resources to handle it is

allocated.

Solution Evaluation and Selection

To evaluate the solutions, each genotype is simulated.

Each genotype is simulated multiple times to minimize

the influence of randomness. During the simulation, the

values of every decision criterium are subject to

measurement. The criterion evaluation is averaged across

multiple simulations of the same solution. After all

solutions within a given population have been simulated,

the ideal solution with the best values in each criterion in

the population is formulated. The ideal solution is

hypothetical. It is used as reference to evaluate other

solutions. The values of all solutions in all criteria are

normalized, where 0 constitutes the criterion value of the

ideal solution and 1 - the worst value ever found.

Subsequently, the distance from a given solution to the

ideal one is calculated using the Euclidean metric. Best

solutions are those that are closest to the ideal solution.

The next step is the selection process. To do that,

genotypes are sorted from best to worst. Survival chances

are allocated to all solutions linearly, where the best

solution has the probability of survival to the next

population equal to 1. The worst solution has the

probability of 0. The solutions are eliminated from the

population according to the probability assigned thereto.

Crossover and Mutation

The final steps of the genetic algorithm are crossover and

mutation. During the crossover, new solutions are

generated. Each new genotype has two parents randomly

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 45

selected. The probability of being selected is higher in

case of better solutions. The weight of being picked as a

parent is the same as the probability of survival in the

previous step. Each pair of parents has two children. The

genes of the children are randomly picked from one of

the parents. If the first child inherited a gene from one

parent, then the second child inherits it from the other

parent. Next, new genotypes are undergoing mutation.

There is a small probability that each gene will be

mutated. Mutation is changing the value of a gene from

0 to 1 or from 1 to 0. This is to broaden the spectrum of

the solutions searched. Finally, to ensure that all

restrictions on solutions are met, the same algorithm as

in case of the population initiation is performed.

PERFORMANCE

The presented optimizer was used to find solutions to

multiple problems. To test convergence, the same

problem was optimized with multiple times using

different seeds. Convergence depends on the following

parameters:

• number of genetic algorithm iterations,

• size of population,

• variance of the simulation output data (which may be

minimized by increasing the simulation time and number

of repetitions),

• size of the problem (number of: servers, components,

business processes, etc.).

The values of such parameters may be increased to

achieve better convergence, but it would also make the

optimization time longer. In the end it all comes down to

the processing power and time. The more we have of

those, the better convergence may be achieved.

The simulation time is not only dependent on how long it

has to be processed, but also on how many events must

be executed in the environment. The number of events

depends on the number of business processes and their

two attributes:

• expected value of a random variable of time between

business process invocations,

• expected number of steps in a process to complete it.

Furthermore, there is one more value that has great

impact on the simulation time. It is the ratio of load

generated by the processes to available resources. The

more load generated by the processes in comparison with

the available resources, the longer service queues on the

components. When the service instance is executed, the

estimated execution times of all other service instances

are updated. In case of a long queue, a lot of services have

to be updated. According to the data gathered by a Java

profiler, the service instance updating the process may

consume up to 90% of the computation power provided

to the optimizer. In case of a very short queue (shorter

than 1 on average), it does not consume so many

resources and the simulation process may be performed

up to 10 times faster. Additionally, during experiments,

it turned out that with short queues, the Service

Scheduling algorithm of the optimal solution had a very

low convergence. It is almost as if it was selected

randomly. The reason for this is that when the queue is

short, then the Service Scheduling algorithm has nothing

to optimize.

Table 1 shows the execution times on different

parameters for the problem that comprises: 100 business

processes and an average of 17.5 steps needed for their

execution. Each business process definition had an

average time between launches in a range of 1 to 500.

This average time was a parameter for calling subsequent

instances of business processes with exponential

distribution. However this average time between

business process instances was subject to changes in

different simulation variants. The services were assigned

an average execution time on a standard processor from

5 to 120 (note that one server has multiple processors so

real execution time can be much shorter). This value was

an input parameter for the execution time of individual

service instances that were randomized according to the

normal distribution (both the average time and standard

deviation). The simulation length was 2000 time units.

Every solution was simulated 10 times to evaluate the

values of its decision criteria. There was 3·10^6 solutions

searched. Each solution had resource allocation problem

size of 50 components allocated to 30 servers. The ratio

between the resources required by the processes and the

resources available on servers were from 2 to 1 (note that

not all servers are used to minimize the resources

consumed in the optimal solution). Optimization has

been done on virtual machine with 3 Intel Xeon E5-2640

2.60 GHz virtual cores.

Table 1. Optimization times of problems with different

amount of business process instances

Average

time

between

invocations

Average

number of

events in

simulation

Total

optimization

time (days)

Average

time of

evaluation

of 1

solution

(seconds)

10 350000 15,202 0,438

20 175000 8,445 0,243

40 87500 6,110 0,176

The differences in values of decision criteria between the

variants varied between 1% and 15%, except for the

variance of the business process execution time, which

differed between 18% and 47%. Best convergence (1%

defference between best solutions of different seeds) had

been achieved when optimization was performing for 60

days for a problem of same size as presented above.

Another experiment was also carried out on the same

problem, but with different population sizes and the

number of iterations as shown in table 2. Each

experiment was repeated five times, and the results of the

time of each repetition are shown in Figure 3. The results

show that the number of iterations in the proposed

solution has a much greater impact on simulation time

than the size of the population. Experiment 4 was carried

out much longer than experiment 3 despite the need to

review the same number of solutions. The reason for this

may be greater optimization convergence with the

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 46

parameters of experiment 3 and thus a greater proportion

of simulations closer to optimal, which require less

computing power. Concept to combine all three types of

optimization methods of business processes in SOA is

new so it is impossible to compare those results to others.

Table 2. Parameters of experiments

 Exp. 1 Exp. 2 Exp. 3 Exp. 4

Iterations 5 000 5 000 5 000 10 000

Population size 100 150 200 100

Figure 3 Execution time (days) of each experiment

repetition.

SUMMARY

The results of the proposed method may be interpreted

dually. On one hand, it may give optimal solutions with

high convergence, but on the other, it greatly depends on

the resources and the problem size. To optimize it, greater

utilization of multi-threading should be implemented in

the simulator. Each simulation should be run as a separate

thread. If further increase of its efficiency is needed,

additional changes could be made. For example, each

solution could be simulated on a different virtual

machine. It is up to the user to decide if such efficiency

of the optimizer is satisfactory. Still, the core of the

optimizer would be same as described in the paper. What

is more, with proper amount of time, it may have high

convergence. As this method is new, it is impossible to

compare it to other optimizers.

REFERENCES

Almeida J.; V. Almeida; D. Ardagna; C. Francalanci; and M.

Trubian. 2006. "Resource Management in the

Autonomic Service-Oriented Architecture”. IEEE

International Conference on Autonomic Computing.

Dublin, Ireland.

BPMN Specification documents. Accessed 31.01.2020.

https://www.omg.org/spec/BPMN/2.0/About-

BPMN/.

da Silva A. S.; H. Ma; and M. Zhang. 2015. "A GP approach to

QoS-aware web service composition including

conditional constraints”. IEEE Congress on

Evolutionary Computation (CEC). Sendai, Japan.

Dyachuk D.; and R. Deters. 2008. "Ensuring Service Level

Agreements for Service Workflows”. IEEE

International Conference on Services Computing.

Honolulu, USA.

Dyachuk D.; and R. Deters. 2007. "Service Level Agreement

Aware Workflow Scheduling”. IEEE International

Conference on Services Computing. Salt Lake City,

USA.

Ebrahim G. A. 2011. "Intelligent Composition of Dynamic-

Cost Services in Service-Oriented Architectures”.

Fifth UKSim European Symposium. Madrid, Spain.

Huang K. C.; Y. C. Lu; M. H. Tsai, Y. J. Wu; and H. Y. Chang.

2016. "Performance-Efficient Service Deployment

and Scheduling Methods for Composite Cloud

Services”. IEEE/ACM 9th International Conference

on Utility and Cloud Computing (UCC). Shanghai,

China.

Mennes R.; B. Spinnewyn; S. Latre; and J. F. Botero. 2016.

"GRECO: A Distributed Genetic Algorithm for

Reliable Application Placement in Hybrid Clouds”.

5th IEEE International Conference on Cloud

Networking (Cloudnet). Pisa, Italy.

Schmid M. 2011. "An approach for autonomic performance

management in SOA workflows”. 12th IFIP/IEEE

International Symposium on Integrated Network

Management and Workshops. Dublin, Ireland.

Wang Z. J.; Z. Z. Liu; X. F. Zhou; and Y. S. Lou. 2011. "An

approach for composite web service selection based

on DGQoS”. The International Journal of Advanced

Manufacturing Technology, 56 (9). London, Great

Britain 1167-1179.

Woźniak A.; and T. Nowicki. 2019. "The Problem of Effective

Deployment Architecture in SOA”. Computer

Science and Mathematical Modelling (9). Warsaw,

Poland. 33-44.

Xianwen F.; F. Xiaoqin; and C. Jiang. 2009. "An Efficient

Approach to Web Service Selection”. Web

Information Systems and Mining: International

Conference. Shanghai, China. 271-280.

Xie L.; J. Luo; J. Qiu; J. A. Pershing; Y. Li; and Y. Chen. 2008.

"Availability “weak point” analysis over an SOA

deployment framework”. IEEE Network Operations

and Management Symposium. Salvador, Bahia,

Brazil.

Zhang C.; R. N. Chang; C. S. Perng; E. So; C. Tang; and T. Tao.

2009. "An Optimal Capacity Planning Algorithm for

Provisioning Cluster-Based Failure-Resilient

Composite Services”. IEEE International

Conference on Services Computing. Bangalore,

India.

Zhao Y.; W. Tan; and T. Jin. 2017. "QoS-aware Web Service

Composition Considering the Constraints between

Services”. 12th Chinese Conference on Computer

Supported Cooperative Work and Social Computing.

Chongqing, China.

ADRIAN P. WOŹNIAK studied at the

Military University of Technology in

Warsaw, where he obtained a degree in

Information Technology in 2012.

Subsequently, he worked as a system

and business analyst. In this role, he

designed many SOA systems. After that, his position

changed to Architect and then Main IT Architect in the

largest retail company in Poland, which allowed him to

gain extensive experience in the field of the SOA system

optimization problem. At the Military University of

Technology, he is a lecturer in software engineering,

system design and system integration. The subjects he

teaches are also his main areas of research. His e-mail

address is: adrian.wozniak@wat.edu.pl

0

10

20

30

40

50

60

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 12 (2020) Seite 47

