
Simulating Dynamic Vehicle Routing Problems
with Athos

Benjamin Hoffmann, Michael Guckert, Kevin Chalmers,
KITE - Kompetenzzentrum für Neil Urquhart

Informationstechnologie School of Computing
Technische Hochschule Mittelhessen, Germany Edinburgh Napier University, Scotland

{benjamin.hoffmann,michael.guckert} {k.chalmers,n.urquhart}
@mnd.thm.de @napier.ac.uk

KEYWORDS
Domain-specific language, Agent-based modelling, Evolution-
ary Algorithms, Vehicle Routing With Time Windows.

ABSTRACT
Complex routing problems, such as vehicle routing problems
with additional constraints, are both hard to solve and hard
to express in a form that is accessible to the human expert
and at the same time processible by a computer system that is
supposed to produce a solution of sufficient quality. The for-
mulation must be formal enough to avoid ambiguities and also
comprehensible enough to be created, discussed and shared by
domain experts. In this paper, we present the domain specific
language Athos in which complex routing problems can be
expressed in a computationally independent, human-readable
form. Athos is then transformed into code that can be run
in an adequate target platform. Suitable methods for solving
problems are available and applied to the given problem. We
present a case study in which we use a genetic algorithm
to solve instances of a vehicle routing problem with time
windows and demonstrate the end to end process to produce
a solution in the Athos environment. Moreover, we show how
the Athos system goes beyond optimisation of static routes
and can be used as a tool to simulate the impact of traffic
and congestion on the tours. We call this extended problem a
dynamic vehicle routing problem with time windows.

INTRODUCTION
Even after many years of research, routing problems are still
a focus of current research efforts. Generally belonging to the
class of NP-hard problems, the search for efficient heuristics
remains a challenge. With logistics networks growing in size
and complexity, efficiency and sustainability become central
issues for the transportation industry.
Rapidly changing requirements need software solutions that
can be easily adapted and extended. If using general purpose
languages (GPLs), changing software requires systems engi-
neers and domain experts to interact and communicate, which
often is a source of misunderstanding leading to weak models
and error prone systems (Dalal and Chhillar 2012). A low
level of abstraction in GPLs prevents reuse of larger building
blocks and therefore implementation has to start from scratch

each time a new problem has to be solved. Using a proprietary
platform creates dependencies to standards imposed by a
commercial software vendor that may not always be in line
with the needs of the current project.
We suggest using a model driven approach to overcome this
dilemma. We discuss how domain experts can specify traffic
related optimisation problems declaratively with our Domain-
Specific Language (DSL) Athos. Athos models are accessible
to humans and can be transformed into executable programs
to be run in appropriate target platforms (e.g. NetLogo, Repast
Symphony, or potentially any other environment).
In this paper, we demonstrate Athos and its features by show-
ing how it can be used to model both a static and a dynamised
version of the Vehicle Routing Problem with Time Windows
(VRPTW). In the dynamic version of the VRPTW mutual
influence of traffic participants is considered. The problem runs
in a network of roads defined in the model and uses a genetic
algorithm to heuristically compute a solution. The models are
as computationally independent as possible and therefore the
algorithm and its implementation are not part of the model but
of the infrastructure of the target platform.

ATHOS
Athos is a DSL designed for the domain of dynamic trans-
portation problems. The language is implemented in Xtext
(https://www.eclipse.org/Xtext/). The Athos architecture con-
tains a generator that transforms Platform-Independent Models
(PIMs) into Platform-Specific Models (PSMs); i.e. executable
code to be run in a target platform. We currently support
NetLogo and use it as our main development environment.
Prototype support for Repast Simphony has also been imple-
mented and tested. Code of an algorithmic nature (e.g. routing
algorithms and heuristics for optimisation) is implemented in
Java and made available to the target platform via libraries. The
NetLogo implementation, for instance, uses extensions that
can be accessed from the generated NetLogo models via the
NetLogo-Extension-API. Athos deliberately does not support
imperative programming as we aim to provide a purely declara-
tive modelling language. Currently available meta-heuristics li-
braries in Athos are an implementation of an ACS (Ant Colony
System) for solving TSP-like problems (Hoffmann, Guckert,
et al. 2018) and an Evolutionary Algorithm for solving more
complex vehicle routing problems like the problem presented
in this paper.

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 39

The VRPTW describes the task of visiting a set of customers
for delivery or pick-up of products, depending on context.
Each visit must conform to time windows specified for each
customer. If the vehicle does not arrive within the limits of the
time window, it either has to wait until the window opens (early
arrival) or the schedule is not feasible (late arrival). Visits at a
customer may also consume a given amount of service time.
Vehicles start and end their journeys in one of possibly many
depots. If more than one depot is used, the problem is referred
to as a multi-depot problem. The problem may be formulated
for a fixed number of vehicles or the number of vehicles may
be part of the objective function of the optimisation problem.
VRPTWs can be used to optimise a single objective (e.g. over-
all distance travelled) or multiple objectives (e.g. number of ve-
hicles and distance travelled) (Dabia, Demir, and Woensel, van
2014). The VRPTW is highly relevant to real-world problems
both in an operational (N. B. Urquhart, Hart, and Judson 2015)
and a planing context (N. Urquhart and Fonzone 2017). The
user of the VRPTW-solving software will be a domain expert,
e.g. a logistics analyst or transport planner. Many industrial
contexts will include additional specific constraints defined by
the business context, i.e. working conditions of staff, types
of vehicle in use, environmental or financial considerations.
The implementation of such additional, possibly very versatile,
constraints leads to an increased workload for professional
programmers using a conventional GPL. A DSL as Athos will
potentially reduce development time and give domain experts
a tool to easily modify and extend a model without having to
access software developers.
Obviously, any problem instance of a VRPTW requires travel
time data between customers and depots. Depending on the
optimisation criterion used, it may also be necessary to retain
distance or emissions data as well. Such data can be held in
an origin-destination matrix (see e.g. Dantzig, Ramser, and
Hubert 1959), or simply be calculated using the Euclidean dis-
tance between customers. However, real-world examples (N.
Urquhart and Fonzone 2017; N. B. Urquhart, Hart, and Judson
2015) usually use an underlying street graph and apply path-
finding algorithms to find routes between customers.
Summarising the discussion, we see that a DSL supporting
the domain of vehicle routing must be capable of expressing
the many different formulations of a VRP including differing
vehicle types, time windows, service times, capacity con-
straints and driving time constraints. At the same time, it
must also support the modelling of the underlying street graph.
The following step by step example illustrates the modelling
features of the language and how a VRPTW can be described.
The product to be delivered is soap each item having a weight
of 1 weight unit. The model contains a single agent type
named delivery with two states awt and die. The agents of
this type wait for an optimal tour to be computed and then
start delivering goods according to the tour received thereby
satisfying demands of the customers on that tour. Travel time
will be computed using the default duration function that uses
length and speed of the agents and counts in the defined
congestion factors so that a high amount of traffic in the
network has an impact on the delivery.

1 model VRPTW_Example
2 world xmin 0 xmax 75 ymin 0 ymax 75
3 products product soap weight 1.0
4 agentTypes
5 agentType staticDelivery congestionFactor 60.0 maxWeight 200.0
6 behaviour awt awaitTour when finished do die;
7 behaviour die vanish;
8 functions
9 durationFunction normal length default

Behavioural patterns of agents are defined by means of be-
haviour blocks. For each agent type a single behaviour block
with an arbitrary number of behaviour states can be defined.
Behaviour states correspond to the states of an implicit finite
automaton. A state consists of a perceivable action and a
specification of transitions. Events can be defined as stimuli
that trigger a transition and entail a change of state.
The Athos meta-model reflects all of the elements of the lan-
guage. Figure 1 shows how agent states are represented there.
AgentTypes are linked to exactly one AgentBehaviourBlock,
which contains one or more AgentBehaviourStates. The state of
an agent corresponds to exactly one observable behaviour that
the agent exhibits when being in the respective state. This ob-
servable behaviour is an instance of AgentBehaviourDescrip-
tion. Athos has a set of built-in AgentBehaviourDescriptions
which will continuously be extended in future versions.
Additionally, an AgentBehaviourState contains an arbitrary
number of AgentBehaviourTransitions, which trigger a change
to a target state depending on a condition. Possible target states
are other named states in the AgentBehaviourBlock (in Figure 1
or anonymous states defined in the AgentBehaviourTransition.

1 agentTypes
2 agentType staticDelivery congestionFactor 60.0 maxWeight 200.0
3 behaviour awt awaitTour when finished do die;
4 behaviour die vanish;

The network is a complete graph with edge lengths equal to the
Euclidean distance between the respective end nodes. Nodes
are defined with their coordinates. As the graph is defined to be
complete, the list of edges is empty. The length of the edges is
used as travel time. Note that this is only an academic example
– any other duration function could be defined and used here.

1 complete network
2 nodes
3 node n1 (35.0, 35.0)
4 ...
5 node n51 (47.00, 47.00)
6 edges

Sources and demands are defined using nodes of the network.
The keyword ea indicates that an evolutionary algorithm is
to be used to compute the tours for the vehicles. Additional
parameters for the algorithm are provided. For each demand
quantities, time windows, and service time are defined.

1 sources
2 n1 isDepot soap sprouts (staticDelivery) agentsStart route
3 ea (n2, n3, n4, ..., n48, n49, n50, n51) popSize 30
4 demands
5 n1 hasDemand soap absQuantity 0.00 earliestTime 0
6 latestTime 230 serviceTime 0
7 ...
8 n51 hasDemand soap absQuantity 13.00 earliestTime 124
9 latestTime 134 serviceTime 10

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 40

behaviour

1

1..*states

refState 0..10..1 conState

0..*

transitions

description

1

AgentType

-name:ID
-congestionFactor:double
-maxVolume:double
-maxWeight:double

AgentBehaviourBlock

AgentBehaviourState

+name:String

AgentBehaviourTransition

condtion:Expression

AgentBehaviourDescription

AgentTourOptimisationBehaviour

AgentAwaitTourFromDepotBehaviour AgentStaticTourAntOptimisationBehaviour

{xor}

Fig. 1. Athos meta-model for modelling agent behaviour.

Agents of a given type can be monitored by using metrics
in which indicators can be defined that can either accumulate
values or set values. These indicators are collected for each
agent and can be viewed for each single agent or condensed
into overall statistics. As any other feature of Athos, metrics
have a representation in the meta model analogous to that of
the behaviours. However, for the sake of brevity this is not
discussed here.

1 defineMetrics
2 metrics for staticDelivery (
3 class metric distanceCovered
4 when (isAtCustomer?)
5 add distanceTo last customer
6 individual metric ticksEarly
7 when (isAtCustomer? && earliestTime > currentTime)
8 add earliestTime − currentTime
9)

Beyond the optimisation of tours with the built in evolutionary
algorithm, Athos can run simulations of dynamic delivery
scenarios with these optimised schedules in which the effect
of traffic and congestion in the network can be measured up
with the individually defined metrics. While a static VRPTW
optimises tours once according to a defined objective function,
a dynamic VRPTW goes beyond that and is sensitive to
dynamic aspects of traffic in the underlying network. We
discuss and compare a static and a dynamic VRPTW in the
case study presented in the next section.

CASE STUDY
In this section, we will present a case study that compares the
static and dynamic variants of the VRPTW problem. We will
analyse how a changed traffic situation influences the success
of the planned tours. First we will use Athos to define a static
VRPTW. In addition, we will define some metrics to see how
the vehicles perform when the traffic situation stays exactly the
same throughout the entire simulation. In a second step, we
will transform the VRPTW into a dynamic VRPTW by adding
additional noise-agents that will induce congestion effects
inside the network. We will use the defined metrics to see how
congestion influenced the outcome of the calculated VRPTW
solution. Note that the complete Athos program, the generated
NetLogo programs (together with the required extension) as
well as some videos showing the simulation can be obtained
from https://athos.mnd.thm.de/public/ecmscasestudy.html.

Figure 2 illustrates the graph used in this case study. The graph
is an artificially simplified version of an urban area with the
following characteristics:
• At its core, the area features a beltway. The roads here

are highly dependent on each other so that congestion on
one road directly expands to other roads of the beltway.

• The depot is located at the very centre of this beltway.
Access roads to the depot also belong to the beltway and
thus are also affected by any congestion on the beltway.

• The centre of this area also features a network of
highways with high capacity. These highways are in-
dependent so that congestion on one highway does not
have ripple effects on adjacent highways.

• Suburban areas are accessible through roads of less
capacity. These roads are more susceptible to conges-
tion when used by a queue of cars or cars with high
congestion factors like heavy-goods vehicles.

1 model UrbanArea
2 world xmin 0 xmax 40 ymin 0 ymax 22
3 <<definition of agent types>>
4 functions
5 durationFunction highway
6 length + 1.5 ∗ accCongestionFactor default
7 durationFunction road length ∗ 3 + 4 ∗ accCongestionFactor
8 network
9 <<definition of nodes>>

10 edge undirected e01 from n0 to n1
11 length 0.0 cfactor 1.0 path "cityRing" function highway
12 edge undirected e12 from n1 to n2
13 length 0.0 cfactor 1.0 path "cityRing" function highway
14 edge undirected e16 from n10 to n11
15 length 0.0 cfactor 1.0 function highway
16 edge undirected e17 from n10 to n18
17 length 0.0 cfactor 1.0 function road
18 << definition of other edges >>

The first two lines of the listing above give a name to the
model and define its global boundaries. The definition of the
agent types used in the case study is omitted in the listing but
will be presented shortly. Lines 4 to 7 contain the functions
that are associated to the two different road types used in the
case study. The function associated to edges which represent
highways was aptly named “highway”. The meaning of this
function is that the length of a highway defines the minimum
amount of time a vehicle needs to cross it. For example, a
highway of length 200 would require 200 ticks to be crossed by
a vehicle, given that the vehicle has a congestion factor of zero

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 41

0001

02
03

04

05
06

07

08

09
10

11

12

13

14
1516

17

18

19

20

21

22

23 24

25

26

n depot node

n navigation node

n customer node

n noise start

beltway

highway

road

noise route

Fig. 2. Artificial graph used in the case study.

and the summed up congestion factor of all other vehicles on
the road is also zero. This is due to the fact that the congestion
factor of each vehicle on a road additionally increases the time
required to cross the respective road.

Roads that belong to the same path share their accumulated
congestion factor. In the listing, edge e01 and e12 belong to
the same path. To account for the fact that normal roads take
longer to travel and are more susceptible to congestion than
highways, the road function multiplies the length of the road
by three and the accumulated congestion factors by four.

1 << environment definition >>
2 agentTypes
3 agentType delivery congestionFactor 0.0 maxWeight 180.0
4 behaviour awt awaitTour when finished do wait;
5 behaviour wait idle for 1000 when finished do die;
6 behaviour die vanish;
7 <<network definition>>
8 sources
9 n0 isDepot soap sprouts (delivery)

10 agentsStart route ea (n3, n5, n9, n10, n12, n13, n16, n17,
11 n19, n21, n22, n23, n24, n25, n26) popSize 30 at 0
12 demands
13 n0 hasDemand soap absQuantity 0.00
14 earliestTime 0 latestTime 500 serviceTime 0
15 n1 hasDemand soap absQuantity 15.0
16 earliestTime 15 latestTime 120 serviceTime 5
17 << more demand specifications >>

The above listing shows the specification of the homogeneous
fleet of vehicles located at the depot. Lines 3 to 6 specify that
these vehicles have a congestion factor of zero and thus do
not congest the roads. Each vehicle can provide a customer
with 180 units of a given product. Line 4 specifies that this
type of vehicle waits at a depot until it is assigned a tour.
As the metrics that we will define in the next step do only
apply for existing agents, lines 5 and 6 tell a vehicle to idle
at the depot for 1,000 ticks before leaving the simulation.
In line 9, node n0 is defined to be a depot. Customers are
defined inside the brackets. Note that the code is intention-

ally no longer computationally independent, because the ea
keyword explicitly specifies the application of an evolutionary
algorithm. This allows to specify the parameters used in the
respective algorithm – in this case, the population is set to a
size of 30. The depot searches for a set of tours for its vehicles
at the very beginning of the simulation. This is specified in line
11 with the keyword at followed by the value zero.

0.001 ·
∑
k∈K

∑
i∈N

∑
j∈N

tijx
k
ij + 100 · |K| → Min! (1)

The depot uses a genetic algorithm (Hoffmann, Chalmers, et al.
2019) that internally builds a complete graph of all customer
nodes (Hoffmann, Guckert, et al. 2018) and optimises the
function given in (1). Here, K denotes the set of vehicles at
the depot, N the set of nodes of the complete graph (including
the depot), tij the travel time from node i to node j and xk

ij a
decision variable that is set to 1 if vehicle k travels from node i
to node j and 0 otherwise. A parameter value of 0.001 weights
the total distance covered by all vehicles. Analogously, 1000
is the weight for the number of vehicles used. The complete
set of parameter values is given in Table II.
Finally, lines 12 to 17 contain the demand specifications. Note
that the depot appears here in order to define the latest point
in time for the return of the vehicles. Table I summarises the
constraints related to the customers in this case study.

1 << environment and delivery agent type >>
2 agentType noiseAgent congestionFactor 150.0 maxWeight 100.0
3 behaviour roam route exact (n1, n2, n9, n10, n3, n4, n5,
4 n13, n14, n15, n6) repeat 5 times
5 when finished do die;
6 behaviour die vanish;
7 << functions and network definition >>
8 sources
9 << n0 still depot >>

10 n1 sprouts (noiseAgent) at 2
11 n2 sprouts (noiseAgent) at 4
12 n23 sprouts (noiseAgent) at 3

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 42

The Athos code presented so far allows us to run the simulation
in a “noise-free” mode: The depot calculates a solution for the
VRPTW and sends out the vehicles to serve the customers. In
order to transform the static VRPTW into a dynamic version,
we will run a second batch of simulations in which additional
noise-agents will increase travel times on the city ring and
some of the roads/highways in the network. To this end, the
above listing introduces another agent type with a congestion
factor of 150. Due to its high congestion factor, this type of
agent considerably slows down traffic on its current road (or
path of roads). The agent follows a predefined route (specified
in lines 3 and 4) 5 times and then disappears. Lines 9 to 11
define the nodes and the exact point in time where an instance
of this type of agent appears. Note that even though node n23
is not part of the specified route of nodes for that type of agent,
it can still appear at this node. The agent then uses the fastest
way to the first node of the tour specified for this agent type
(n1).
The final part of the simulation specification for this case study
is the definition of a set of metrics. In this case study, we are
interested in the cumulative distance travelled by the delivery
vehicles. Moreover, the exact time vehicles had to wait due to
an early arrival at a customer might give some insight on the
efficiency of the calculated tour. Also, it might be important to
now the accumulated time by which vehicles arrived to late at
a customer and the total number of time windows violated and
time windows met. These metrics are specified in the following
listing.

1 << as before >>
2 defineMetrics updateRate 10
3 metrics for delivery (
4 class metric distanceCovered
5 when (isAtCustomer?)
6 add distanceTo last customer
7 class metric ticksEarly
8 when (isAtCustomer? && earliestTime > currentTime)
9 add earliestTime − currentTime

10 class metric ticksLate
11 when (isAtCustomer? && latestTime < currentTime)
12 add currentTime − latestTime
13 class metric windowsViolated
14 when (isAtCustomer? && latestTime < currentTime)
15 add 1
16 class metric windowsMet
17 when (isAtCustomer? && currentTime <= latestTime)
18 add 1
19)

Table II and Table III summarise the results of ten simulation
runs each for the problem without noise agents and the problem
with noise agents that introduce dynamism through reduced
travel speeds. As was to be expected, in the simulations without
noise-agents, no time windows were violated. In addition to
the 16 customers defined for the problem, the metric also
counts the timely return of a vehicle to the depot as a met
time window. Since the evolutionary algorithm used to solve
this problem is not deterministic, some runs feature solutions
with three and some with four vehicles resulting in 19 or 20
met time windows.
The introduction of noise-agents changes the situation dra-
matically. The noise agents effectuate the movement speed on
their respective roads in a way that the delivery vehicles do no
longer meet all time windows. In fact, nearly half of the defined

TABLE I. CONSTRAINTS OF THE VRPTW.

Cstm Location Demand Earliest Latest Service
01 (18.0, 9.0) 15 15 120 5
03 (21.0, 11.0) 20 10 120 7
05 (20.0, 7.5) 50 20 90 10
09 (18.0, 15.0) 45 80 220 15
10 (23.0, 16.0) 25 90 250 10
12 (30.0, 9.0) 30 35 260 5
13 (25.0, 5.0) 60 40 140 7
16 (10.0, 4.0) 35 45 160 8
17 (7.0, 11.0) 40 0 140 50
19 (28.0, 1.0) 15 10 130 9
21 (0.0, 0.0) 50 5 120 5
22 (1.0, 9.0) 30 10 90 15
23 (2.0, 17.0) 40 20 60 5
24 (36.0, 17.0) 35 25 50 8
25 (34.0, 6.0) 20 20 60 9
26 (11.0, 1.0) 15 30 45 10

time windows are violated. In each of the ten simulations with
noise-agents the accumulated ticks by which time windows
were missed is around 760.
In both cases the distance travelled by the vehicles was nearly
which was to be expected. The slower movement on the roads
caused the vehicles to arrive at their customers later than
originally calculated which is also reflected in the amount of
ticks that vehicles arrived too early at their customers which
is reduced by around 6.7 ticks.
In our future work, we will use Athos to further research into
dynamic VRPTW to provide strategies that provide satisfactory
solutions even in case of sudden traffic surges.

RELATED WORK
Steil et al. (Steil et al. 2011) discuss an approach that en-
compasses all aspects involved in the domain of patrol routing
algorithms. It covers all stages in the development of patrol
routes from the specification (expression) and simulation-based
assessment (execution and evaluation) to the translation of
patrol routes to the real-world (engagement). Accordingly, they
call their approach the 4Es approach.
The 4Es approach is similar to the approach presented in
this paper in that it integrates the expression, simulation and
evaluation in an appropriate environment. Moreover, it also
uses a DSL for the expression of routing algorithms. Their
DSL, called Turn, allows to define the next destination of an
agent in a road network by means of set reduce functions that
can be chained to successively reduce the set of all nodes
until only one node is left which is then selected as an agent’s
next destination. This way the agents in the simulation follow
a pre-defined routing strategy. The system evaluates routing
strategies by application of four distinct metrics. These metrics
provide information on the time it took a first-responding agent
to get to the node where an event occurred, the percentage of

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 43

TABLE II. RESULTS FOR TEN RUNS OF A NOISE-FREE SIMULATION (PARAMETER SETTINGS: POPSIZE = 30; SIMPLEPERMUTATIONPROB = 0.9;
MAXDISTANCE = 4; GENERATIONS = 80; WNOOFTOURS = 100; WTOTALDIST = 0.001; TRMTSIZE = 4; TAKEBESTPROB = 0.8; MUTATIONPROB = 0.1.

Metric/Run 1 2 3 4 5 6 7 8 9 10 Avg.
Total distance 101.90 105.10 105.10 101.90 101.90 107.65 102.79 107.65 101.90 107.65 104.35

Ticks early 27 48 48 27 27 27 25 27 27 27 31
Ticks late 0 0 0 0 0 0 0 0 0 0 0

Windows violated 0 0 0 0 0 0 0 0 0 0 0
Windows met 19 20 20 19 19 19 20 20 19 20 19.5

TABLE III. RESULTS FOR TEN RUNS OF A NOISE-FULL SIMULATION (SAME PARAMETER SETTINGS AS STATED IN TABLE II).

Metric/Run 1 2 3 4 5 6 7 8 9 10 Avg.
Total distance 104.86 101.71 101.71 101.71 101.71 101.71 101.71 104.86 107.42 104.86 103.23

Ticks early 39 18 18 18 18 18 18 39 18 39 24.30
Ticks late 766 764 766 762 760 764 761 764 776 763 764.6

Windows violated 9 9 9 9 9 9 9 9 10 9 9.1
Windows met 11 10 10 10 10 10 10 11 10 11 10.30

nodes in the network visited by agents per day, the number of
nodes visited that were in a state in which an event of interest
is likely to occur (so-called hot nodes), an the amount of time
agents spent at such hot nodes.
Despite the mentioned similarities, the work of Steil et al.
differs considerably from our work when looked at in more
detail. First of all, the two research efforts target two different
domains. As is pointed out by the authors, patrol routing
problems share some features with vehicle-routing problems
but greatly differ in what practitioners ultimately aim to
achieve. In VRPs, in the majority of cases, the objective is
the minimisation of a given cost function. By contrast, patrol
routing dispatchers often do not search for a solution that
optimises any specific value. Instead they search for routes that
bring about satisfactory values for certain metrics as long as
the routes followed by the agents are somewhat unpredictable
and are non-deterministic. In contrast to the Turn DSL, Athos
allows an explicit definition of a list of nodes to visit in the
exact specified order or the definition of a set of nodes which
have to be visited in an order that optimises a user-defined
function. Most importantly, in the simulation framework of
Steil et al., there is no concept of velocity or congestion.
Agents move along the underlying graph among neighbouring
nodes one node per time step. Due to the fact that there are no
congestion effects or any changes in the movement speeds of
agents, their approach cannot be used to simulate dynamic
vehicle routing problems where travel times are subject to
fluctuations depending on the current traffic situation.
Another platform for traffic and transport simulations is MAT-
Sim (Horni, Nagel, and Axhausen 2016). MATSim is a mutli-
agent microsimulation system based on the co-evolutionary
principle. This means that the agents in the system are
equipped with a set of plans to follow. Throughout multiple
iterations the agents try and evaluate the outcome of the plans
at their disposal. In each cycle a plan is selected, applied and
evaluated. With a given probability, agents modify different
dimensions of their plans. For example, agents can vary the

time they leave a given location, choose a different route or
switch to a different mode of transport. Each agent seeks to
optimise its individual outcome.
Macijewski and Nagel present a MATSim-based approach to
evaluate algorithms for the DVRP (Maciejewski and Nagel
2012). At the same time, their work intends to plan demand-
responsive transport services (DRT severcies) using the MAT-
Sim framework. In their approach MATSim is used to cal-
culate time-dependant travel times for a given scenario. The
calculated data is then merged with additional demand and
supply data which results in a (dynamic) VRPTW. This way,
the authors designed four scenarios. The scenarios were de-
signed to closely resemble traffic situations common to urban
environments. Two of the scenarios analysed courier services
while the other two scenarios investigated taxi services. They
calculated solutions in two ways: First, they solved the problem
using time-dependant travel times. Second, they produced
solutions based on average travel times. The latter results
were then applied to the problem with time-dependant travel
times. The authors found that for the couriers services the
routes calculated on the basis of the time dependent travel
times considerably outperformed those based on average travel
times. Their explanation is that knowledge of time-dependant
travel times allows for the calculation of routes that avoid
congested roads. Interestingly, for the taxi services travel times
for the solutions of both approaches were rather similar which
the authors explain with the nature of the demands to taxi-
services which does not lend itself to careful planning. For
both scenarios, the solutions based on average times violated
the defined time windows when applied to the problem that
featured time-dependent travel times.
GAMA (Grignard et al. 2013) is a sophisticated simulation-
platform. It features the GAML DSL which was designed
for modelling agent-based simulations. The DSL’s meta-model
elements can be divided into elements for the definition of
aspects related to entities, space and time. A species element
is to GAML what a class is to object-oriented languages like

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 44

Java. A distinct feature of the GAML meta-model is that it
allows agents to form containment hierarchies that can be
used to model different levels of detail in a simulation. The
species definition is also used to equip agents with skills like
movement and attributes like movement speed. The species of
an agent also defines a set of actions and reflexes. Actions
represent behaviour that an agent executes when asked to. By
contrast, a reflex represents behaviour that the agent executes
in every step of the simulation given that all guard conditions
hold. Even though GAML could also be used to model
transport and routing problems, it requires modelling in a
language not specifically tailored towards this domain. Thus,
models are on a less abstract level which makes harder to
comprehend and communicate by domain experts.

CONCLUSIONS AND FUTURE WORK
We have demonstrated how Athos can be used to model
dynamic vehicle routing problems and how solutions can
be computed. Besides the evolutionary algorithm presented
here Athos provides other heuristics for solving a variety of
complex routing problems (see Hoffmann, Guckert, et al. 2018
and Hoffmann, Chalmers, et al. 2019).
At the moment, we extend the Athos environment with a flexi-
ble interface to Open Street Map (www.openstreetmap.org) so
that the definition of the underlying network can be generated
from OSM data rather than be coded manually. Beyond that
our concern is to measure general usability aspects of the
language by letting domain experts assess the applicability
of Athos. While we currently aim at improving the modeling
capabilities of Athos our long-term intention is to develop an
integrated instrument that allows a domain expert to describe
and solve real world traffic related routing problems without
any need for algorithmic decisions. The system will choose
appropriate methods and heuristics and generate efficient best-
practice code for the target platform.

REFERENCES
Dabia, S., E. Demir, and T. Woensel, van (2014). An exact approach

for the pollution-routing problem. English. BETA publicatie :
working papers. Technische Universiteit Eindhoven.

Dalal, Sandeep and Rajender Singh Chhillar (2012). “Case Studies of
Most Common and Severe Types of Software System Failure”. In:
International Journal of Advanced Research in Computer Science
and Software Engineering 2.8, pp. 341–347.

Dantzig, George, Bernard Ramser, and John Hubert (1959). “The
Truck Dispatching Problem”. In: Management Science 6.1,
pp. 80–91.

Grignard, Arnaud et al. (2013). “GAMA 1.6: Advancing the art of
complex agent-based modeling and simulation”. In: International
Conference on Principles and Practice of Multi-Agent Systems,
pp. 117–131.

Hoffmann, Benjamin, Kevin Chalmers, et al. (2019). “Athos - A
Model Driven Approach to Describe and Solve Optimisation
Problems: An Application to the Vehicle Routing Problem with
Time Windows”. In: Proceedings of the 4th ACM International
Workshop on Real World Domain Specific Languages. RWDSL
’19. Washington D. C., DC, USA: ACM, 3:1–3:10.

Hoffmann, Benjamin, Michael Guckert, et al. (2018). “A Domain-
Specific Language For Routing Problems”. In: European Confer-
ence on Modelling and Simulation, ECMS 2018, Wilhelmshaven,
Germany, May 22-25, 2018, Proceedings, pp. 262–268.

Horni, Andreas, Kai Nagel, and Kay W. Axhausen (2016). “Introduc-
ing MATSim”. In: The Multi-Agent Transport Simulation MAT-
Sim. Ed. by Andreas Horni, Kai Nagel, and Kay W. Axhausen.
Ubiquity Press, pp. 3–8.

Maciejewski, Michał and Kai Nagel (2012). “Towards Multi-Agent
Simulation of the Dynamic Vehicle Routing Problem in MAT-
Sim”. In: Parallel Processing and Applied Mathematics. Ed. by
Roman Wyrzykowski et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 551–560.

Steil, Dana A. et al. (2011). “Patrol Routing Expression, Execution,
Evaluation, and Engagement”. In: IEEE Transactions on Intelli-
gent Transportation Systems 12.1, pp. 58–72.

Urquhart, Neil B., Emma Hart, and Alistair Judson (2015). “Multi-
Modal Employee Routing with Time Windows in an Urban
Environment”. In: Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, pp. 1503–1504.

Urquhart, Neil and Achille Fonzone (2017). “Evolving Solution
Choice and Decision Support for a Real-world Optimisation
Problem”. In: Proceedings of the Genetic and Evolutionary
Computation Conference. GECCO ’17. ACM, pp. 1264–1271.

AUTHOR BIOGRAPHIES
BENJAMIN HOFFMANN is a research assistant at
Technische Hochschule Mittelhessen in Friedberg from
which he also received his master’s degree. He is also a
PhD student at Edinburgh Napier University. His research
activities are in domain-specific languages, model-driven
software development and optimisation problems.

MICHAEL GUCKERT is a Professor of Applied Infor-
matics at Technische Hochschule Mittelhessen and head
of KITE - AACC (Kompetenzzentrum für Information-
stechnologie - Advanced Analytics Cognitive Computing)
. He received a degree in Mathematics from Justus Liebig
University Giessen and a PhD in Computer Science from
Philipps University Marburg. His research areas are multi
agent systems, model driven software development and
applications of artificial intelligence.

KEVIN CHALMERS is a Associate Professor at Ed-
inburgh Napier University where he leads the Computer
Science and Software Engineering subject area. He gained
his PhD from Edinburgh Napier University in 2009,
examining the application of mobile concurrency models
to ubiquitous computing. His research is focused primarily
on concurrency and parallelism and how different tech-
nologies can support this.

NEIL URQUHART is a lecturer in Computing Science
at Edinburgh Napier University where he is Programme
Leader for the Computing Science. He gained is PhD from
Edinburgh Napier University in 2002, writing a thesis
examining the use of Software Agents and Evolution-
ary Algorithms to solve a real-world routing optimisa-
tion problem. His research interests include Evolutionary
Computation and Agent-based Systems and their applica-
tion to real-world optimisation problems

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 45

