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ABSTRACT 

Automated warehouses operated by a fleet of robots not 
only offer great flexibility, as fleet size can be adjusted 
easily to throughput requirements, they also provide 
higher redundancy compared to common solutions for 
automated storage and retrieval systems. In case a single 
robot fails, the remaining fleet of robots is able to 
continue working within the system, so that throughput 
is only slightly affected. 
However, adequate strategies are required for this 
scenario. In this contribution, we present four different 
approaches to cope with robot downtimes, which are 
based on the routing of the robots. These strategies are 
compared by performing a simulation study in which a 
robotic mobile fulfilment system is considered. 

INTRODUCTION 

In addition to common stacker-crane-based automated 
storage and retrieval systems, a new type of automated 
warehouse has been deployed within the past few years 
that is used for part-to-picker order picking. This type 
basically consists of a rack system containing storage 
items and a fleet of vehicles moving within the storage 
area, fulfilling storage and retrieval requests. 
There are two main categories that can be distinguished. 
In the first category, vehicles move on a single storage 
tier. The products are stored on racks arranged in 
storage aisles on the ground (figure 1). Whenever a 
certain storage item is needed, a vehicle travels towards 
the rack containing the item, lifts the rack and brings it 
to the picking zone, which is located somewhere near 
the storage area. The item is picked by an operator and 
the rack is brought back to an empty storage location. 
Vehicles travel along the storage aisles as well as 
underneath the racks, insofar as they are not carrying 
one of these.  
In literature, these systems are denominated as robotic 
mobile fulfilment systems (RMFS) and the vehicles as 
robots (Azadeh et al. 2018).  

Figure 1: Robotic mobile fulfilment system 

The second type of system consists of several storage 
tiers, connected by lifts (figure 2). In some 
configurations, these lifts are used only for the vertical 
transport of the storage items, whilst the vehicles always 
operate on the same storage tier. In other configurations 
that we consider, lifts are used to transfer vehicles 
between the storage tiers and the input/output (I/O) 
locations. On every storage tier, vehicles use a grid of 
storage and cross-aisles to reach the storage locations. 
In literature, these systems are called shuttle systems 
and the vehicles are denominated as shuttles (Tappia et 
al. 2018). 
We refer to both of theses types – RMFS and shuttle 
systems – as mobile-robot-based warehouses. One of 
the main characteristics is that every robot can reach 
every storage location. The system can therefore 
theoretically be operated with a single robot. Depending 
on the required throughput, the fleet size (i.e. the 
number of robots working in the system) can be 
adjusted. Furthermore, in the event that a single robot 
fails, the remaining robots are able to continue 
responding to storage and retrieval requests and the 
system’s throughput is only slightly affected. 

Figure 2: Shuttle system 
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In literature, RMFS as well as shuttle systems are 
widely discussed. There are several decision problems 
that need to be addressed during the planning phase as 
well as during the operation, such as layout design 
(Lienert et al. 2018), storage assignment (Boysen et al. 
2018), order batching (Boysen et al. 2017), dispatching 
(Yuan and Gong 2017), traffic management 
(Merschformann et al. 2017), battery charging and 
swapping (Zou et al. 2017) as well as dwelling 
strategies for idle robots (Roy et al. 2016). 
In general, different strategies are developed and 
compared to each other by using analytical models, 
often based on queuing networks, or by conducting 
simulation studies. However, robot downtimes are not 
considered, although these have an impact on the 
attainable throughput. Reasons for downtimes are 
manifold – for instance the interruption of the power 
supply, contaminations, insufficient maintenance and 
unstable loads. 
In this work, we present different strategies for handling 
downtimes and compare these by performing a 
simulation study. 
The reminder of this paper is organized as follows. 
Next, we briefly introduce the time window routing 
method, as our strategies are based on this conflict-free 
routing approach. Subsequently, we describe four 
different failure-handling strategies. We apply these to 
an RMFS and compare the results before we conclude 
our work.  

TIME WINDOW ROUTING METHOD 

To run mobile-robot-based warehouses robustly and 
efficiently, complex control strategies are needed. 
Amongst others, traffic needs to be managed to avoid 
congestion, blocking and collisions among robots. One 
option for coping with these challenges is routing based 
on time windows: Before a robot starts moving, the 
whole path is reserved – from its current position 
towards the destination. To apply this method, the 
layout (of each storage tier) is modelled as a graph. 
There is a timeline with reserved and free time windows 
for each node representing a layout section (figure 3). 

Figure 3: Reserved and free time windows on a node 𝑖 

If a route has to be calculated, the procedure searches 
for a conflict-free route through the free time windows 
using an A*-algorithm. The required time windows are 
reserved and the robot can start executing the computed 
route. 
The idea of this method was introduced first by Kim and 
Tanchocco (Kim and Tanchocco 1991) and has been 
applied in different contexts – for instance routing 

automated guided vehicles in container terminals 
(Stenzel 2008), organizing aircraft taxi traffic at airports 
(Bussacker 2005) or in general moving agents over an 
infrastructure (ter Mors 2010). Furthermore, the concept 
has been used for organizing a fleet of robots both in 
RMFS (Hvězda et al. 2018) and shuttle-systems (Lienert 
and Fottner 2017). 
The absence of deadlocks can even be guaranteed, in the 
case where some robots are late and do not meet their 
reserved time intervals. The crucial point is that the 
node’s crossing order of the robots, based on the 
conflict-free schedule, is maintained (Maza and 
Castagna 2005). 
In a previous work, we modified the method to 
incorporate acceleration and deceleration processes, 
which are usually neglected. During the planning, so-
called “segments” are created, which describe a 
movement of a robot over several nodes in a straight 
line. The computed route is executed segment by 
segment, respecting the node’s crossing order (Lienert 
and Fottner 2018). 
Figure 4 shows a fragment of a layout graph (nodes 
𝑖, … , 𝑚) and the corresponding timelines. For the robot 
𝑟  there is a segment planned that comprises a 
movement over five nodes. Furthermore, there are some 
more reservations that belong to the routes of other 
robots (𝑟 , … 𝑟 ). If robot 𝑟  is delayed, then robot 𝑟  is 
forced to decelerate and shorten the segment by 
introducing an intermediate stop on node 𝑙 in order to 
meet the sequence of reservations on node 𝑚 (robot 𝑟  
before robot 𝑟 ). Note, that reservations not only 
comprise occupation time themselves (marked by the 
trajectories), but also additional buffer times in advance 
of the reservations, so as to prevent collisions should 
delays occur. 

Figure 4: Segment and reservations of other robots 

There are two reasons why the routing procedure might 
not lead to a successful result, and thus no route towards 
the destination being available at the given time. The 
first reason is an endless reservation of an idle robot 
placed on the destination node or on a node that belongs 
to the only available path towards the destination node.  
The second reason is that the time window from which 
the routing starts is bounded by another reservation on 
the same node. In figure 5, routing towards the 
destination node 𝑘, starting at timestamp 𝑡 , is 
unsuccessful because the current free time window on 
start node 𝑖 cannot be left before the reservation of robot 
𝑟  starts. 
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Figure 5: Routing is unsuccessful due to another 
reservation on the start node 

The failure-handling strategies presented in the 
following section are based on the time window routing 
method. 

FAILURE-HANDLING STRATEGIES 

In this section, we describe four different strategies to 
cope with downtimes. We assume that a downtime only 
occurs before a robot starts with the execution of the 
next segment of its route. This limits the state space of 
the system and the strategies can be simplified – for 
instance, a breakdown can never occur during a loading 
or picking process. Furthermore, we assume that a robot 
resumes working after a certain time span, the mean 
time to repair (MTTR) has elapsed. 
All presented strategies are generic in the sense they are 
not designed to fit a certain layout. The strategies only 
manipulate the routes. Orders – retrieval or storage tasks 
– that are already assigned to robots are not modified.

Strategy 1: Ignore 

The first strategy is simple and straightforward: robot 
failures are strictly ignored by the control. As soon as a 
failure occurs, the corresponding robot stops and 
remains stationary on the node where it is currently 
located. As a consequence, this node is blocked and 
other robots are prevented from passing that node. 
These robots are forced to interrupt the execution of 
their routes. Furthermore, all robots that reserved a time 
window on one of the nodes which are part of the 
remaining route of the broken robot have to stop, to the 
extent that they are supposed to pass the node after the 
broken robot. 
With reference to figure 4, if robot 𝑟  breaks down and 
thereby blocks its current node 𝑖, it is not only robot 𝑟  
which is affected, but also robot 𝑟 . Note, that these 
robots might block yet others. 
As soon as the MTTR has elapsed, the broken robot 
resumes the execution of its originally computed route, 
and blocked robots are triggered to continue their routes 
as well. 

Strategy 2: Pause 

The second approach is as simple as the first one, but 
more restrictive. As soon as a failure occurs, all robots 
operating within the system are forced to interrupt the 
execution of their routes. More specifically, if there is a 
breakdown present in the system, a robot will not start 
with the execution of the next segment of its route. As 

soon as the MTTR elapsed, all robots resume with the 
execution of their originally computed routes. Note, that 
all robots will be significantly delayed. 
This strategy does not take advantage of the higher 
redundancy mentioned above. However, it serves as a 
lower bound for the comparison of the throughput. 

Strategy 3: Restart 

The idea behind the third strategy is to stop all robots 
once again, but then to perform a restart where all routes 
are recalculated avoiding the node blocked by the 
broken robot. 
As soon as all robots have come to a standstill, their 
remaining routes – and more specifically their reserved 
time windows – are deleted. Next, each robot reserves 
an endless time window on its current node. That 
prevents any other robot from routing over that node. 
All robots (besides the broken one) are added to a list of 
robots that need to be routed. 
Next, the restart procedure as described by the flowchart 
in figure 6 commences. 

Figure 6: Procedure: restart of all robots to be routed 

Routing is executed for each robot on the list. If routing 
is successful, the robot is removed from the list, the 
endless time window is deleted so the node can be 
accessed by other robots, and the execution of the newly 
constructed route starts. Otherwise, the robot will 
remain on the list and will be routed once again in the 
subsequent iteration.  
If, in an iteration, at least one robot could be routed 
successfully, the routing will restart with the first robot 
remaining in the list again. The iterations continue until 
all robots have been routed successfully. 
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Figure 7: Robot 𝑟  and 𝑟  are restarted 

In the example in figure 7, the routing of robot 𝑟  will 
fail during the first iteration and is only possible after 
robot 𝑟  has been routed.  
There are two reasons why it is not possible to route a 
single robot during an iteration. First, a robot is 
prevented from reaching its destination by the endless 
reservation of the broken robot. In that case, the robot 
remains blocked until the broken robot resumes 
working. 
As soon as the MTTR has elapsed, the flowchart in 
figure 8 is executed. 

Figure 8: Procedure: restart of a single robot 

After the recovered robot has been routed, blocked 
robots are dealt with by performing the restart procedure 
(flowchart in figure 6) once again. 
Note that the recovered robot is added to the list of 
robots to be routed if routing fails. 

Figure 9: Robot 𝑟  and 𝑟 can only be routed after broken 
robot 𝑟  resumes working 

In the example in figure 9, robot 𝑟  cannot be routed 
successfully, as the broken robot 𝑟  blocks the only 
available path. Robots 𝑟  as well as 𝑟  will be restarted 
after the MTTR has elapsed and a route for robot 𝑟  has 
been recalculated, such that the endless time window 
has been deleted. The second reason is that two or more 
robots block each other for endless time (Figure 10, a). 
In that case, an intermediate destination will be assigned 
to one of the robots involved in that deadlock (Figure 
10, b). As soon as the robot reaches that intermediate 
destination (Figure 10, c) the routing towards the 
original destination takes place (Figure 10, d). 

Figure 10: Deadlock resolution 

The strategy Restart can also be used to initialize a 
system without failures, adding all robots located 
somewhere in the system to the list of robots to be 
routed. 
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Strategy 4: Reroute 

The fourth strategy consists in rerouting only robots that 
are directly affected by the broken robot. 
If a failure occurs, the execution of the computed route 
of the robot is stopped. As the flowchart in figure 11 
describes, all robots that reserved a time window on that 
node are identified and added to the list of robots to be 
rerouted. 
Referring to figure 4, if robot 𝑟  breaks down on node 
𝑚, robot 𝑟  has to be rerouted. Next, the route of the 
broken robot is deleted as well as all reserved time 
windows on its current node. An endless time window 
on the node is reserved. 

Figure 11: Procedure: end execution 

Whenever a robot is ready to execute the next segment 
of its route, it will be checked whether that robot must 
be rerouted. In that case, the remaining route of the 
robot is deleted and the routing is again executed. If 
routing is successful, an alternative route without the 
blocked node is found and the execution of the newly 
calculated route starts. 
If there is no route available due to an endless 
reservation, the execution is ended as described 
previously. The robot is treated as if it were broken, and 
other robots which routed using the robot’s current node 
are affected, and need to be rerouted. As soon as the 
MTTR has elapsed, the recovered robot is restarted as in 
the previously described strategy (flowchart in figure 8), 
which leads to a restart of all blocked robots to be 
routed (flowchart in figure 6). 
If another time window on the same node impedes a 
successful routing as shown in figure 5, the execution is 
once again ended, though this is immediately followed 
by a restart (flowchart in figure 8). Note that ending 
execution deletes the limiting time window. 
The flowchart in figure 12 summarizes the described 
procedure. 

Figure 12: Procedure: reroute 

SIMULATION STUDY 

In this section, we compare the previously described 
strategies by performing a simulation study, considering 
an RMFS. 

Considered System 

We apply the strategies to a fleet of robots moving 
within an RMFS with 336 storage locations, which are 
arranged in seven double rows divided by storage aisles. 
There are two cross-aisles located at one third and at 
two thirds of the aisle length. All aisles can be used for 
bi-directional traffic. 
There are four picking areas with five picking places 
each arranged before the storage system. In front of 
these places, there are two uni-directional cross-aisles 
(see figure 13). A replenishment area, where empty 
racks are refilled, is located on the opposite side of the 
storage area. 
The robots are dedicated to a picking zone and perform 
three different cycles to maintain the material flow 
between storage locations, picking area and 
replenishment area. For a more detailed description of 
the system, we refer to (Lienert et al. 2018).  
We implemented the RMFS using the discrete event 
simulation environment Tecnomatix Plant Simulation. 
Figure 13 shows a screenshot of the simulation model, 
comprising the picking area and part of the storage 
aisles. Note that loaded robots must use aisles and cross-
aisles whereas unloaded robots are also free to use 
storage locations for navigation towards their 
destination. Each rectangle represents a node in the 
layout graph that is used for the time window routing. 

Start

 Identify all robots that 
reserved a time window 
on the current node and 
add them to the list of 
robots to be rerouted

Delete route
Delete all reservations on 

current node
Reserve an endless time 

window on current node

End

Start

Delete robot from list of 
robots to be rerouted

Delete route
Execute routing

Routing 
successful?

no

yes

End

Execute route End execution
Save robot on 

list of robots 
to be routed

End

Further time windows 
reserved on current 
node?

yes

no

End execution

Restart robot

End

An alternative 
route has been 

found

Blocked robot is 
routed after restart 

of broken robot

Robot is rerouted 
without limiting 

time window

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 76



Figure 13: Screenshot of the simulation model 

Parameter Settings 

In a first experiment, availability is set to 100 percent – 
so no downtimes occur – so as to determine maximum 
system throughput. Subsequently, availability is set to 
99 percent and MTTR to three minutes. 
Failures are generated based on these parameters by the 
software using an Erlang distribution for the duration of 
a failure and an exponential distribution for the time 
between them. As failures are generated for each robot 
independently, several robots can be affected by a 
breakdown at the same time.  
We vary the number of robots, starting with four robots 
(one for each picking zone), and going up to 60 robots 
working in the system in steps of four, and repeat the 
experiments for each strategy. All the remaining 
parameters, such as robot’s acceleration and maximum 
speed, remain the same. Simulation time is set to 72 
hours. No warm-up time is taken into account. We 
conduct five replications for each parameter setting. 

Results 

The chart in figure 14 shows the throughput measured 
in cycles per hour. Regarding the idealized system, 
performance scales (in a quasi-linear manner) with the 
number of robots until saturation is reached. The curves 
for the idealized systems Reroute and Restart show a 
small “knee” between 16 and 20 robots. As each robot 
is assigned to a certain picking zone, with 20 robots, the 
number of robots per picking zone equals the number of 
picking places, and a different strategy for the supply of 
the picking zone is used (see Lienert et al. 2018). 
The more robots are operating in the system, the clearer 
the differences between the strategies. As expected, 
Pause shows the worst performance. Throughput peaks 
at just 20 robots, and then starts decreasing. With an 
increasing number of robots, the probability of a 
breakdown grows and the whole fleet is prevented from 
working. Ignore shows a similar behaviour, although 
throughput is slightly higher. The more robots operating 
in the system, the more robots affected by a breakdown.  

Figure 14: Throughput reached by the strategies 

In the worst-case scenario, all robots have to interrupt 
the execution of their routes in order to maintain the 
node’s crossing order. 
Restart reaches a significantly higher throughput than 
Ignore, which peaks with 48 robots before throughput 
decreases slightly. However, the highest throughput is 
reached by Reroute. The curve is similar to the one for 
the idealized system, but saturation is reached at a lower 
number of cycles.  
In a second experiment, we vary the availability of the 
robots from 97.5 to 99.5 percent in steps of 0.5 percent, 
and repeat the experiments applying only Reroute. The 
chart in figure 15 shows the corresponding throughput. 

Figure 15: Throughput for different availabilities 

As can be observed, all curves are similar and differ 
mainly in the maximum throughput that can be reached.  
The chart in figure 16 provides a closer view of the loss 
of throughput compared to the idealized system without 
downtimes. In the case of high availability (99.5 
percent), the loss of throughput remains relatively small 
and closed to the lower bound of 0.5 percent. However, 
with an increasing number of robots, the loss of 
throughput generated by the failures also increases. 
With 60 robots, the loss of throughput is above 2 
percent. 
The more evident this behaviour is, the lower the 
availability. With an availability of 97.5 percent, loss of 
throughput reaches as high as 11 percent. 
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Figure 16: Loss of throughput for different availabilities 

CONCLUSION 

In this contribution, we considered mobile-robot-based 
warehouses. We presented four different strategies for 
dealing with failures that are based on the time window 
routing method. We applied these strategies to an 
RMFS and conducted a simulation study to compare the 
performance. Rerouting robots showed the best results 
and should be used for further investigations. 
Furthermore, we showed how throughput is affected for 
different levels of availability. 
By way of next research, we suggest introducing safety 
corridors for accessing broken robots. In this respect, 
two questions have to be answered. First: Which path 
should be taken by an operator to access the broken 
robot? And second: How can the corridor be established 
in order to guarantee that no robot will enter that 
corridor while an operator is accessing the broken 
robot? 
One option is routing an operator through the system 
applying the time window routing as well. However, all 
reservations must be endless to ensure no robot enters 
the corridor as long as the operator moves within the 
system.  
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