
 FAILURE-HANDLING STRATEGIES FOR MOBILE ROBOTS IN
AUTOMATED WAREHOUSES

Thomas Lienert
Ludwig Stigler

Johannes Fottner
Chair of Materials Handling, Material Flow, Logistics

Department of Mechanical Engineering
Technical University of Munich

Boltzmannstrasse 15, 85748 Garching, Germany
Email: thomas.lienert@tum.de, ludwig.stigler@tum.de, j.fottner@tum.de

KEYWORDS
Automated Warehouses, Mobile Robots, Failure
Handling, Time Window Routing Method, Discrete
Event Simulation

ABSTRACT

Automated warehouses operated by a fleet of robots not
only offer great flexibility, as fleet size can be adjusted
easily to throughput requirements, they also provide
higher redundancy compared to common solutions for
automated storage and retrieval systems. In case a single
robot fails, the remaining fleet of robots is able to
continue working within the system, so that throughput
is only slightly affected.
However, adequate strategies are required for this
scenario. In this contribution, we present four different
approaches to cope with robot downtimes, which are
based on the routing of the robots. These strategies are
compared by performing a simulation study in which a
robotic mobile fulfilment system is considered.

INTRODUCTION

In addition to common stacker-crane-based automated
storage and retrieval systems, a new type of automated
warehouse has been deployed within the past few years
that is used for part-to-picker order picking. This type
basically consists of a rack system containing storage
items and a fleet of vehicles moving within the storage
area, fulfilling storage and retrieval requests.
There are two main categories that can be distinguished.
In the first category, vehicles move on a single storage
tier. The products are stored on racks arranged in
storage aisles on the ground (figure 1). Whenever a
certain storage item is needed, a vehicle travels towards
the rack containing the item, lifts the rack and brings it
to the picking zone, which is located somewhere near
the storage area. The item is picked by an operator and
the rack is brought back to an empty storage location.
Vehicles travel along the storage aisles as well as
underneath the racks, insofar as they are not carrying
one of these.
In literature, these systems are denominated as robotic
mobile fulfilment systems (RMFS) and the vehicles as
robots (Azadeh et al. 2018).

Figure 1: Robotic mobile fulfilment system

The second type of system consists of several storage
tiers, connected by lifts (figure 2). In some
configurations, these lifts are used only for the vertical
transport of the storage items, whilst the vehicles always
operate on the same storage tier. In other configurations
that we consider, lifts are used to transfer vehicles
between the storage tiers and the input/output (I/O)
locations. On every storage tier, vehicles use a grid of
storage and cross-aisles to reach the storage locations.
In literature, these systems are called shuttle systems
and the vehicles are denominated as shuttles (Tappia et
al. 2018).
We refer to both of theses types – RMFS and shuttle
systems – as mobile-robot-based warehouses. One of
the main characteristics is that every robot can reach
every storage location. The system can therefore
theoretically be operated with a single robot. Depending
on the required throughput, the fleet size (i.e. the
number of robots working in the system) can be
adjusted. Furthermore, in the event that a single robot
fails, the remaining robots are able to continue
responding to storage and retrieval requests and the
system’s throughput is only slightly affected.

Figure 2: Shuttle system

Storage area Picking zone

Storage tier
I/O locations

Lift

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 72

In literature, RMFS as well as shuttle systems are
widely discussed. There are several decision problems
that need to be addressed during the planning phase as
well as during the operation, such as layout design
(Lienert et al. 2018), storage assignment (Boysen et al.
2018), order batching (Boysen et al. 2017), dispatching
(Yuan and Gong 2017), traffic management
(Merschformann et al. 2017), battery charging and
swapping (Zou et al. 2017) as well as dwelling
strategies for idle robots (Roy et al. 2016).
In general, different strategies are developed and
compared to each other by using analytical models,
often based on queuing networks, or by conducting
simulation studies. However, robot downtimes are not
considered, although these have an impact on the
attainable throughput. Reasons for downtimes are
manifold – for instance the interruption of the power
supply, contaminations, insufficient maintenance and
unstable loads.
In this work, we present different strategies for handling
downtimes and compare these by performing a
simulation study.
The reminder of this paper is organized as follows.
Next, we briefly introduce the time window routing
method, as our strategies are based on this conflict-free
routing approach. Subsequently, we describe four
different failure-handling strategies. We apply these to
an RMFS and compare the results before we conclude
our work.

TIME WINDOW ROUTING METHOD

To run mobile-robot-based warehouses robustly and
efficiently, complex control strategies are needed.
Amongst others, traffic needs to be managed to avoid
congestion, blocking and collisions among robots. One
option for coping with these challenges is routing based
on time windows: Before a robot starts moving, the
whole path is reserved – from its current position
towards the destination. To apply this method, the
layout (of each storage tier) is modelled as a graph.
There is a timeline with reserved and free time windows
for each node representing a layout section (figure 3).

Figure 3: Reserved and free time windows on a node 𝑖

If a route has to be calculated, the procedure searches
for a conflict-free route through the free time windows
using an A*-algorithm. The required time windows are
reserved and the robot can start executing the computed
route.
The idea of this method was introduced first by Kim and
Tanchocco (Kim and Tanchocco 1991) and has been
applied in different contexts – for instance routing

automated guided vehicles in container terminals
(Stenzel 2008), organizing aircraft taxi traffic at airports
(Bussacker 2005) or in general moving agents over an
infrastructure (ter Mors 2010). Furthermore, the concept
has been used for organizing a fleet of robots both in
RMFS (Hvězda et al. 2018) and shuttle-systems (Lienert
and Fottner 2017).
The absence of deadlocks can even be guaranteed, in the
case where some robots are late and do not meet their
reserved time intervals. The crucial point is that the
node’s crossing order of the robots, based on the
conflict-free schedule, is maintained (Maza and
Castagna 2005).
In a previous work, we modified the method to
incorporate acceleration and deceleration processes,
which are usually neglected. During the planning, so-
called “segments” are created, which describe a
movement of a robot over several nodes in a straight
line. The computed route is executed segment by
segment, respecting the node’s crossing order (Lienert
and Fottner 2018).
Figure 4 shows a fragment of a layout graph (nodes
𝑖, … , 𝑚) and the corresponding timelines. For the robot
𝑟 there is a segment planned that comprises a
movement over five nodes. Furthermore, there are some
more reservations that belong to the routes of other
robots (𝑟 , … 𝑟). If robot 𝑟 is delayed, then robot 𝑟 is
forced to decelerate and shorten the segment by
introducing an intermediate stop on node 𝑙 in order to
meet the sequence of reservations on node 𝑚 (robot 𝑟
before robot 𝑟). Note, that reservations not only
comprise occupation time themselves (marked by the
trajectories), but also additional buffer times in advance
of the reservations, so as to prevent collisions should
delays occur.

Figure 4: Segment and reservations of other robots

There are two reasons why the routing procedure might
not lead to a successful result, and thus no route towards
the destination being available at the given time. The
first reason is an endless reservation of an idle robot
placed on the destination node or on a node that belongs
to the only available path towards the destination node.
The second reason is that the time window from which
the routing starts is bounded by another reservation on
the same node. In figure 5, routing towards the
destination node 𝑘, starting at timestamp 𝑡 , is
unsuccessful because the current free time window on
start node 𝑖 cannot be left before the reservation of robot
𝑟 starts.

𝑡
𝑖

Reserved time windows

Free time windows

𝑗

𝑖

𝑙

𝑘

𝑚

𝑟

𝑡

𝑟

𝑟 𝑟

𝑟

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 73

Figure 5: Routing is unsuccessful due to another
reservation on the start node

The failure-handling strategies presented in the
following section are based on the time window routing
method.

FAILURE-HANDLING STRATEGIES

In this section, we describe four different strategies to
cope with downtimes. We assume that a downtime only
occurs before a robot starts with the execution of the
next segment of its route. This limits the state space of
the system and the strategies can be simplified – for
instance, a breakdown can never occur during a loading
or picking process. Furthermore, we assume that a robot
resumes working after a certain time span, the mean
time to repair (MTTR) has elapsed.
All presented strategies are generic in the sense they are
not designed to fit a certain layout. The strategies only
manipulate the routes. Orders – retrieval or storage tasks
– that are already assigned to robots are not modified.

Strategy 1: Ignore

The first strategy is simple and straightforward: robot
failures are strictly ignored by the control. As soon as a
failure occurs, the corresponding robot stops and
remains stationary on the node where it is currently
located. As a consequence, this node is blocked and
other robots are prevented from passing that node.
These robots are forced to interrupt the execution of
their routes. Furthermore, all robots that reserved a time
window on one of the nodes which are part of the
remaining route of the broken robot have to stop, to the
extent that they are supposed to pass the node after the
broken robot.
With reference to figure 4, if robot 𝑟 breaks down and
thereby blocks its current node 𝑖, it is not only robot 𝑟
which is affected, but also robot 𝑟 . Note, that these
robots might block yet others.
As soon as the MTTR has elapsed, the broken robot
resumes the execution of its originally computed route,
and blocked robots are triggered to continue their routes
as well.

Strategy 2: Pause

The second approach is as simple as the first one, but
more restrictive. As soon as a failure occurs, all robots
operating within the system are forced to interrupt the
execution of their routes. More specifically, if there is a
breakdown present in the system, a robot will not start
with the execution of the next segment of its route. As

soon as the MTTR elapsed, all robots resume with the
execution of their originally computed routes. Note, that
all robots will be significantly delayed.
This strategy does not take advantage of the higher
redundancy mentioned above. However, it serves as a
lower bound for the comparison of the throughput.

Strategy 3: Restart

The idea behind the third strategy is to stop all robots
once again, but then to perform a restart where all routes
are recalculated avoiding the node blocked by the
broken robot.
As soon as all robots have come to a standstill, their
remaining routes – and more specifically their reserved
time windows – are deleted. Next, each robot reserves
an endless time window on its current node. That
prevents any other robot from routing over that node.
All robots (besides the broken one) are added to a list of
robots that need to be routed.
Next, the restart procedure as described by the flowchart
in figure 6 commences.

Figure 6: Procedure: restart of all robots to be routed

Routing is executed for each robot on the list. If routing
is successful, the robot is removed from the list, the
endless time window is deleted so the node can be
accessed by other robots, and the execution of the newly
constructed route starts. Otherwise, the robot will
remain on the list and will be routed once again in the
subsequent iteration.
If, in an iteration, at least one robot could be routed
successfully, the routing will restart with the first robot
remaining in the list again. The iterations continue until
all robots have been routed successfully.

𝑗

𝑖

𝑘

𝑟

𝑡
𝑟

𝑡

Start

For each robot to be routed:
Execute routing
Delete robot from the list if

routing was successful and
start with execution.

At least one
routing
procedure
successful?

no

yes

At least one
robot to be
routed?

yes

End

Resolve deadlock

yes

no

Deadlock occurred?

End

no

All robots
routed

Blocked robots are
routed after restart of

broken robot

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 74

Figure 7: Robot 𝑟 and 𝑟 are restarted

In the example in figure 7, the routing of robot 𝑟 will
fail during the first iteration and is only possible after
robot 𝑟 has been routed.
There are two reasons why it is not possible to route a
single robot during an iteration. First, a robot is
prevented from reaching its destination by the endless
reservation of the broken robot. In that case, the robot
remains blocked until the broken robot resumes
working.
As soon as the MTTR has elapsed, the flowchart in
figure 8 is executed.

Figure 8: Procedure: restart of a single robot

After the recovered robot has been routed, blocked
robots are dealt with by performing the restart procedure
(flowchart in figure 6) once again.
Note that the recovered robot is added to the list of
robots to be routed if routing fails.

Figure 9: Robot 𝑟 and 𝑟 can only be routed after broken
robot 𝑟 resumes working

In the example in figure 9, robot 𝑟 cannot be routed
successfully, as the broken robot 𝑟 blocks the only
available path. Robots 𝑟 as well as 𝑟 will be restarted
after the MTTR has elapsed and a route for robot 𝑟 has
been recalculated, such that the endless time window
has been deleted. The second reason is that two or more
robots block each other for endless time (Figure 10, a).
In that case, an intermediate destination will be assigned
to one of the robots involved in that deadlock (Figure
10, b). As soon as the robot reaches that intermediate
destination (Figure 10, c) the routing towards the
original destination takes place (Figure 10, d).

Figure 10: Deadlock resolution

The strategy Restart can also be used to initialize a
system without failures, adding all robots located
somewhere in the system to the list of robots to be
routed.

Legend

Failure Destination Endless time
window

𝑟

𝑟𝑟

𝑟

𝑟𝑟

At least one
robot to be
routed?

no

yes

Start

Route recovered
robot

End

Restart all robots
to be routed

End

Routing
successful?

no

yes

Add recovered
robot to the list of
robots to be routed

Execute route

Legend

Failure Destination Endless time
window

𝑟

𝑟𝑟

𝑟

𝑟𝑟

a) b)

c) d)

Legend

Failure Destination Endless time
windowSaved

destination

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 75

Strategy 4: Reroute

The fourth strategy consists in rerouting only robots that
are directly affected by the broken robot.
If a failure occurs, the execution of the computed route
of the robot is stopped. As the flowchart in figure 11
describes, all robots that reserved a time window on that
node are identified and added to the list of robots to be
rerouted.
Referring to figure 4, if robot 𝑟 breaks down on node
𝑚, robot 𝑟 has to be rerouted. Next, the route of the
broken robot is deleted as well as all reserved time
windows on its current node. An endless time window
on the node is reserved.

Figure 11: Procedure: end execution

Whenever a robot is ready to execute the next segment
of its route, it will be checked whether that robot must
be rerouted. In that case, the remaining route of the
robot is deleted and the routing is again executed. If
routing is successful, an alternative route without the
blocked node is found and the execution of the newly
calculated route starts.
If there is no route available due to an endless
reservation, the execution is ended as described
previously. The robot is treated as if it were broken, and
other robots which routed using the robot’s current node
are affected, and need to be rerouted. As soon as the
MTTR has elapsed, the recovered robot is restarted as in
the previously described strategy (flowchart in figure 8),
which leads to a restart of all blocked robots to be
routed (flowchart in figure 6).
If another time window on the same node impedes a
successful routing as shown in figure 5, the execution is
once again ended, though this is immediately followed
by a restart (flowchart in figure 8). Note that ending
execution deletes the limiting time window.
The flowchart in figure 12 summarizes the described
procedure.

Figure 12: Procedure: reroute

SIMULATION STUDY

In this section, we compare the previously described
strategies by performing a simulation study, considering
an RMFS.

Considered System

We apply the strategies to a fleet of robots moving
within an RMFS with 336 storage locations, which are
arranged in seven double rows divided by storage aisles.
There are two cross-aisles located at one third and at
two thirds of the aisle length. All aisles can be used for
bi-directional traffic.
There are four picking areas with five picking places
each arranged before the storage system. In front of
these places, there are two uni-directional cross-aisles
(see figure 13). A replenishment area, where empty
racks are refilled, is located on the opposite side of the
storage area.
The robots are dedicated to a picking zone and perform
three different cycles to maintain the material flow
between storage locations, picking area and
replenishment area. For a more detailed description of
the system, we refer to (Lienert et al. 2018).
We implemented the RMFS using the discrete event
simulation environment Tecnomatix Plant Simulation.
Figure 13 shows a screenshot of the simulation model,
comprising the picking area and part of the storage
aisles. Note that loaded robots must use aisles and cross-
aisles whereas unloaded robots are also free to use
storage locations for navigation towards their
destination. Each rectangle represents a node in the
layout graph that is used for the time window routing.

Start

 Identify all robots that
reserved a time window
on the current node and
add them to the list of
robots to be rerouted

Delete route
Delete all reservations on

current node
Reserve an endless time

window on current node

End

Start

Delete robot from list of
robots to be rerouted

Delete route
Execute routing

Routing
successful?

no

yes

End

Execute route End execution
Save robot on

list of robots
to be routed

End

Further time windows
reserved on current
node?

yes

no

End execution

Restart robot

End

An alternative
route has been

found

Blocked robot is
routed after restart

of broken robot

Robot is rerouted
without limiting

time window

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 76

Figure 13: Screenshot of the simulation model

Parameter Settings

In a first experiment, availability is set to 100 percent –
so no downtimes occur – so as to determine maximum
system throughput. Subsequently, availability is set to
99 percent and MTTR to three minutes.
Failures are generated based on these parameters by the
software using an Erlang distribution for the duration of
a failure and an exponential distribution for the time
between them. As failures are generated for each robot
independently, several robots can be affected by a
breakdown at the same time.
We vary the number of robots, starting with four robots
(one for each picking zone), and going up to 60 robots
working in the system in steps of four, and repeat the
experiments for each strategy. All the remaining
parameters, such as robot’s acceleration and maximum
speed, remain the same. Simulation time is set to 72
hours. No warm-up time is taken into account. We
conduct five replications for each parameter setting.

Results

The chart in figure 14 shows the throughput measured
in cycles per hour. Regarding the idealized system,
performance scales (in a quasi-linear manner) with the
number of robots until saturation is reached. The curves
for the idealized systems Reroute and Restart show a
small “knee” between 16 and 20 robots. As each robot
is assigned to a certain picking zone, with 20 robots, the
number of robots per picking zone equals the number of
picking places, and a different strategy for the supply of
the picking zone is used (see Lienert et al. 2018).
The more robots are operating in the system, the clearer
the differences between the strategies. As expected,
Pause shows the worst performance. Throughput peaks
at just 20 robots, and then starts decreasing. With an
increasing number of robots, the probability of a
breakdown grows and the whole fleet is prevented from
working. Ignore shows a similar behaviour, although
throughput is slightly higher. The more robots operating
in the system, the more robots affected by a breakdown.

Figure 14: Throughput reached by the strategies

In the worst-case scenario, all robots have to interrupt
the execution of their routes in order to maintain the
node’s crossing order.
Restart reaches a significantly higher throughput than
Ignore, which peaks with 48 robots before throughput
decreases slightly. However, the highest throughput is
reached by Reroute. The curve is similar to the one for
the idealized system, but saturation is reached at a lower
number of cycles.
In a second experiment, we vary the availability of the
robots from 97.5 to 99.5 percent in steps of 0.5 percent,
and repeat the experiments applying only Reroute. The
chart in figure 15 shows the corresponding throughput.

Figure 15: Throughput for different availabilities

As can be observed, all curves are similar and differ
mainly in the maximum throughput that can be reached.
The chart in figure 16 provides a closer view of the loss
of throughput compared to the idealized system without
downtimes. In the case of high availability (99.5
percent), the loss of throughput remains relatively small
and closed to the lower bound of 0.5 percent. However,
with an increasing number of robots, the loss of
throughput generated by the failures also increases.
With 60 robots, the loss of throughput is above 2
percent.
The more evident this behaviour is, the lower the
availability. With an availability of 97.5 percent, loss of
throughput reaches as high as 11 percent.

0

50

100

150

200

250

300

350

400

450

500

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

C
yc

les
 p

er
 h

ou
r

Robots

No downtimes
Reroute
Restart
Ignore
Pause

0

50

100

150

200

250

300

350

400

450

500

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

C
yc

les
pe

r h
ou

r

Robots

100.0
99.5
99.0
98.5
98.0
97.5

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 77

Figure 16: Loss of throughput for different availabilities

CONCLUSION

In this contribution, we considered mobile-robot-based
warehouses. We presented four different strategies for
dealing with failures that are based on the time window
routing method. We applied these strategies to an
RMFS and conducted a simulation study to compare the
performance. Rerouting robots showed the best results
and should be used for further investigations.
Furthermore, we showed how throughput is affected for
different levels of availability.
By way of next research, we suggest introducing safety
corridors for accessing broken robots. In this respect,
two questions have to be answered. First: Which path
should be taken by an operator to access the broken
robot? And second: How can the corridor be established
in order to guarantee that no robot will enter that
corridor while an operator is accessing the broken
robot?
One option is routing an operator through the system
applying the time window routing as well. However, all
reservations must be endless to ensure no robot enters
the corridor as long as the operator moves within the
system.

REFERENCES
Azadeh, K.; de Koster, R. and Roy, D., 2018, “Robotized and

Automated Warehouse Systems: Review and Recent
Developments.” Available at SSRN.

Boysen, N.; Briskorn, D. and Emde, S., 2017, “Parts-to-picker
based order processing in a rack-moving mobile robots
environment.” European Journal of Operational Research
262, No.2, 550-562.

Boysen, N; de Koster, R. and Weidinger, F., 2018, “Path
planning for robotic mobile fulfillment systems.”,
“Warehousing in the e-commerce era: A survey.”
European Journal of Operational Research, in press.

Busacker, T. 2005. Steigerung der Flughafen-Kapazität durch
Modellierung und Optimierung von Flughafen-Boden-
Rollverkehr – Ein Beitrag zu einem künftigen
Rollführungssystem. Dissertation. Technische Universität
Berlin.

Havězda, J.; Rybecký, T.; Kulich, M. and Přeučil, L., 2018,
“Context-Aware Route Planning for Automated
Warehouses.” In Proceedings of the 21st International
Conference on Intelligent Transportation Systems, 2955-
2960.

Kim C. W. and Tanchoco J. M. A., 1991, “Conflict-free
shortest-time bi-directional AGV routing.” International
Journal of Production Research 29, No.12, 2377-2391.

Lienert, T. and Fottner, J., 2017, “No more deadlocks –
applying the time window routing method to shuttle
systems.” In Proceedings of the 31st European
Conference on Modelling and Simulation, 169-175.

Lienert, T; Wenzler, F. and Fottner, J., 2018, “Robust
integration of acceleration and deceleration processes into
the time window routing method.” In Proceedings of the
9th International Scientific Symposium on Logistics, 66-86.

Lienert, T.; Staab, T.; Ludwig, C. and Fottner, J., 2018,
“Simulation-based Performance Analysis in Robotic
Mobile Fulfilment Systems.” In Proceedings of the 8th
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, 383-390.

Maza, S. and Castagna, P., 2005, “A performance-based
structural policy for conflict-free routing of bi-directional
automated guided vehicles.” Computers in Industry 56,
No.7, 719-733.

Mershformann, M.; Xie, L.; Erdmann, D., 2018, “Path
planning for robotic mobile fulfillment systems”, arXiv
preprint arXiv:1706.09347

Roy, D.; Krishnamurthy, A.; Heragu, S. and Malmborg, C.,
2015, “Queuing models to analyze dwell-point and cross-
aisle location in autonomous vehicle-based warehouse
systems”, European Journal of Operational Research 242,
No. 1, 72-87.

Stenzel, B. 2008. Online Disjoint Vehicle Routing with
Application to AGV Routing. Dissertation. Technische
Universität Berlin.

Tappia, E.; Roy, D. de Koster, R. and Melacini, M., 2018,
“Modeling, Analysis, and Design Insights for Shuttle-
Based Compact Storage Systems”, Transportation Science
51, No.1

Ter Mors, A. W. 2010. The world according to MARP.
Dissertation. Delft University of Technology

Yuan, Z.; Gong, Y.Y., 2017, “Bot-In-Time Delivery for
Robotic Mobile Fulfillment Systems.” IEEE Transactions
on Engineering and Management 64, No.1, 83-93

Zou, B.; Xu, X.; Gong, Y.Y., de Koster, R., 2017, “Evaluating
battery charging and swapping strategies in a robotic
mobile fulfillment system.” European Journal of
Operational Research 267, No. 2, 733-753.

THOMAS LIENERT has been working as a research
assistant at the Chair of Materials Handling, Material
Flow and Logistics, Technical University of Munich,
since 2014. His research deals with the simulation of
mobile-robot-based warehouses. His email address is:
thomas.lienert@tum.de.

LUDWIG STIGLER graduated from the Technical
University of Munich. His master’s thesis deals with
failure-handling strategies for mobile robots. His email
address is: ludwig.stigler@tum.de.

JOHANNES FOTTNER is professor and head of the
Chair of Materials Handling, Material flow, Logistics at
the Technical University of Munich. His email address
is: j.fottner@tum.de.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Lo
ss

 o
f t

hr
ou

gh
pu

t

Robots

99.5
99.0
98.5
98.0
97.5

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 10 (2019) Seite 78

