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Abstract—The efficient allocation of tasks to vehicles in a
fleet of self-driving vehicles (SDV) becomes challenging for large-
scale systems (e. g. more than hundred vehicles). Operations
research provides different methods that can be applied to solve
such assignment problems. Integer Linear Programming (ILP),
the Hungarian Method (HM) or Vogel’s Approximation Method
(VAM) are frequently used in related literature (Paul 2018;
Dinagar and Keerthivasan 2018; Nahar et al. 2018; Ahmed et al.
2016; Korukoğlu and Ballı 2011; Balakrishnan 1990). The under-
lying paper proposes an adapted version of VAM which reaches
better solutions for non-quadratic matrices, namely Vogel’s
Approximation Method for non-quadratic Matrices (VAM-nq).
Subsequently, VAM-nq is compared with ILP, HM and VAM by
solving matrices of different sizes in computational experiments
in order to determine the proximity to the optimal solution and
the computation time. The experimental results demonstrated
that both VAM and VAM-nq are five to ten times faster in
computing results than HM and ILP across all tested matrix
sizes. However, we proved that VAM is not able to generate
optimal solutions in large quadratic matrices constantly (starting
at approx. 15× 15) or small non-quadratic matrices (starting at
approx. 5× 6). In fact, we show that VAM produces insufficient
results especially for non-quadratic matrices. The result deviate
further from the optimum if the matrix size increases. Our
proposed VAM-nq is able to provide similar results as the original
VAM for quadratic matrices, but delivers much better results
in non-quadratic instances often reaching an optimum solution.
This is especially important for practical use cases since quadratic
matrices are rather rare.

LIST OF ABBREVIATIONS

GAP Generalised Assignment Problem
HM Hungarian Method
ILP Integer Linear Programming
KPI Key Performance Indicator
SDV Self-driving Vehicle
VAM Vogel’s Approximation Method
VAM-nq Vogel’s Approximation Method for non-quadratic

Matrices

I. INTRODUCTION

The transportation problem is an extensively studied topic
in operational research (Dı́az-Parra et al. 2014). The methods
for solving the mentioned problem aim to minimise the total
transportation cost while bringing goods from several supply
points (e. g. warehouses) to demand locations (e. g. customers).
In general, each transport origin features a fixed amount of
goods that can be distributed. Correspondingly, every point
of transport destination requires a certain amount of units
(Shore 1970). The underlying use case, where tasks have to
be assigned to self-driving vehicles (SDVs), differs in some
regards from the classical transportation problem. In our case,
each vehicle has a capacity restriction of one, i. e. a maximum
of one load carrier can be transported at a time. Furthermore,
each task corresponds to a demand of one. This basically
means that every task can only be allocated to one single
vehicle. Additionally, the amount of available vehicles does
rarely match the number of unassigned tasks in practice. Since
the size of the matrices depends on those two factors, non-
quadratic matrices (e. g. 10 × 50) are common. There are
different approaches that can be applied to solve this kind of
problem, e. g. ILP, HM and VAM. While ILP and HM manage
to always generate an optimal solution, VAM often fails to do
so. Furthermore, those methods vary greatly in the computa-
tional demand necessary to solve assignment problems. There
are two major reasons involved in the motivation for improving
the original VAM. For one, the authors wanted to keep the
great performance (computational time) of the original VAM.
Secondly, the insufficient results for non-quadratic matrices
should be improved significantly, i. e. reaching the optimum.
Following these considerations, an improved VAM version, as
proposed in this paper, was developed and compared with the
three established methods. The goal was to find a solution
that provides optimal or near-optimal results while at the same
requiring a small amount of resources (computing power).

Despite its age, the approximation method proposed by
those authors is still in use nowadays and is subject to recent
operations research as the contributions by Banik and Hasan
(2018), Ezekiel and Edeki (2018), Hlatká et al. (2017), Ahmed
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et al. (2016), and Gani and Baskaran (2014) show.

Already Shimshak et al. (1981) extended the original VAM
with rules that apply in case of ties, e. g. the same maximum
cost differences occur. Out of the four cases using either
individual rules or a combination of them, only one case
manages to generate slightly better solutions than the original
VAM in regards to costs. Furthermore, they used only small
matrices (5×5, 5×10 and 10×10) which does not provide any
information on the results achieved in large-scale applications.
Goyal (1984) further tried to improve Shimshak’s approach
in case of unbalanced transportation problems, i. e. the total
supply does not correspond to the total demand. Again, only a
small 3×3 matrix was used, thus, lacking any real informative
value. Balakrishnan (1990) realised this drawback and tested
Goyal’s approach with other not specified examples concluding
that it is not always better than Shimshak’s approach. He
in turn proposed an extended approach which was tested
in different scenarios and compared with those of the other
authors mentioned above leading to even better solutions.
In a more recent contribution, Korukoğlu and Ballı (2011)
improved the original VAM by constructing a total opportunity
cost matrix which they obtained through the addition of the
row and column opportunity cost matrix. A row opportunity
matrix is for example generated by subtracting the smallest
cost value in each row from all other values in the same row.
The column opportunity matrix is obtained in the same way.
Korukoğlu and Ballı (2011) further deviate from the classical
approach by selecting the three rows or columns with the
highest penalty costs instead of choosing only the highest one.
Out of those three, the cell with the lowest transportation cost
is consequently selected and used for resource allocation.

This paper is structured as follows: in the second chapter a
detailed description of VAM as well as a brief explanation of
the HM and the ILP are given. The third chapter features the
description of the proposed VAM-nq. Chapter four will provide
an overview of the experiments as well as the discussion of
the corresponding results. The last chapter contains a brief
conclusion to this paper.

II. ESTABLISHED SOLUTION METHODS FOR THE
GENERALISED ASSIGNMENT PROBLEM

This chapter is intended to provide a description on es-
tablished solution methods for the Generalised Assignment
Problem. These are in particular the basic VAM as well as
the HM and the ILP. Since the use case at hand differs in
some areas from conventional examples (e. g. the vehicles can
only transport one load carrier at a time and have thus a supply
of one), these variations will be considered in the description
of VAM and the HM. The ILP approach will be adapted to
the underlying use case as well, i. e. an appropriate objective
function as well as necessary constraints will be formulated.

A. Vogel’s Approximation Method

The following description of VAM is based on the original
proposal by Reinfeld and Vogel (1958). VAM solves transport
matrices by repeating the steps as seen below until a feasible
solution is found. The cells of the matrices are filled with costs
cij associated with allocating a task to a vehicle. Those costs
occur when a vehicle brings goods from a point of origin i to

a destination j. Each source (origin) features a specific amount
of goods that can be allocated (supply). Correspondingly, each
sink (destination) usually requires a certain number of units
(demand). In order to carry out the allocation under these
circumstances, the following steps are necessary:

1) Calculate the difference between the smallest and the
second-smallest cell value for each row and each column.

2) Select the row or column which features the biggest
difference. If there is a tie, choose the row or column
containing the smallest cell value.

3) Choose the smallest cell value of the selected row or
column and allocate the corresponding task to a vehicle.

4) Eliminate the row and column that has been used for the
allocation.

5) Check if there are still vehicles and tasks left to allocate,
and repeat steps 1 - 4 in case that there are.

Apart from the later proposed adoption of VAM in this
paper, there are different authors that tried to improve or
change the classic VAM in order to achieve better results and
move closer to an optimal solution which can be achieved for
example by ILP or HM (Paul 2018; Dinagar and Keerthivasan
2018; Nahar et al. 2018; Ahmed et al. 2016; Korukoğlu and
Ballı 2011; Balakrishnan 1990; Goyal 1984; Shimshak et al.
1981).

An example for VAM can be found in Table I through Ta-
ble III. Here, the rows are represented by vehicles (Vi) and the
columns by tasks (Tj). The costs (cij) are the corresponding
cell values. The row differences can be found in ∆i while the
column differences are saved in ∆j. Starting with the initial
matrix (Table I), it is evident that the biggest difference can be
found in the third row featuring the lowest value in the third
column (Table II). Accordingly, task 3 is assigned to vehicle 3.
After the allocation, the third row and column are eliminated
(Table III).

TABLE I. INITIAL MATRIX TO BE SOLVED BY VAM

cij T1 T2 T3 T4 Δi

V1 200 100 400 50 50

V2 60 80 30 350 30

V3 210 300 70 150 80

V4 120 510 340 80 40

V5 70 80 40 400 30

Δj 10 0 10 30

TABLE II. MATRIX FEATURING THE IDENTIFIED BIGGEST DIFFERENCE
(80)

cij T1 T2 T3 T4 Δi

V1 200 100 400 50 50

V2 60 80 30 350 30

V3 210 300 70 150 80

V4 120 510 340 80 40

V5 70 80 40 400 30

Δj 10 0 10 30
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TABLE III. MATRIX AFTER ELIMINATING ASSIGNED ROW AND
COLUMN

cij T1 T2 T3 T4 Δi

V1 200 100 400 50 50

V2 60 80 30 350 30

V3 210 300 70 150 80

V4 120 510 340 80 40

V5 70 80 40 400 10

Δj 10 0 10 30

B. Integer Linear Programming

As already stated previously, ILP is able to find an optimal
solution for different scenarios, even large-scale problems.
Initially, one has to formulate an objective function as well
as applicable restrictions in order to receive correct results.
According to Osman (1995) and following the adoption of the
ILP to fit the use case at hand, the objective function reads as
follows:

min
∑
j∈J

∑
v∈V

djv · cjv (1)

∑
v∈V

djv = 1 ∀j ∈ J (2)

∑
j∈J

djv ≤ 1 ∀v ∈ V (3)

djv ∈ {0, 1} ∀j ∈ J, ∀v ∈ V (4)

The goal of the objective function (1) is to minimise the
sum of all costs (cjv) for all jobs J = 1, . . . ,m and for all
vehicles V = 1, . . . , n which is the result of multiplying the
decision variable (djv) with the corresponding costs which
arise when a job j is assigned to a vehicle v. The first constraint
(2) ensures that every job is assigned to a vehicle while the
second constraint (3) makes sure that each vehicle’s capacity
of 1 is not exceeded, i. e. each vehicle can execute a maximum
of one job at a time. The last constraint (4), which applies for
both jobs and vehicles, restricts the decision variable djv to
binary values.

C. Hungarian Method

The Hungarian Method was initially proposed by Kuhn
(1955) to solve the Generalised Assignment Problem (GAP).
Similar to the ILP, the HM is able to find an optimal solution
to said problem. The algorithm solves n × n matrices (e. g.
10× 10) by carrying out the following steps until an optimum
solution is found:

1) Find the minimum value in each column and subtract this
value from all other values in the corresponding column.

2) Find the minimum value in each row and subtract this
value from all other values in the corresponding row.

3) Draw lines through the columns and rows so that all
zero values of the matrix are covered by as few lines
as possible.

4) Check if the number of lines equals n. If it does, an
optimal allocation of the zero values is possible. If the
number of lines is smaller than n, an optimal allocation
is not yet feasible and step 5 has to be carried out.

5) Find the smallest value which is not covered by a line
and a) subtract this value from each not covered row and
b) add it to each covered column.

6) Return to step 3.

It has to be noted that in case of n × m matrices (e. g.
10× 40), an extension takes places to generate n×n matrices
(e. g. 40 × 40) since the method only works with quadratic
matrices. The additional cells are filled with values that are of
the same size as the highest value of the original matrix. This
extension requires additional computing power since instead
of 400 cells (10 × 40), the algorithm has to consider 1600
cells (40×40). It is evident that this is a drawback when non-
quadratic matrices are to be solved. This is always the case
when more tasks than vehicles have to be considered or vice
versa.

D. Comparison ILP / VAM / HM

In order to compare the three methods, experiments have
been carried out with different quadratic and non-quadratic
matrices using an Intel Core i7-6820HQ 2.70 GHz featuring
32 GB RAM. Figure 1 shows clearly that ILP requires the
most computational time for quadratic matrices. Especially,
in large matrices the time it takes to finish the calculations
rises significantly. HM and VAM on the other hand do not
require a lot of time to finish calculating the matrices. In fact,
there is almost no difference between them up until 80 × 80
matrices where the HM starts to take longer than VAM. From
this point forward, the difference between HM and VAM grows
continuously with increasing matrix size. This might lead to
the conclusion that it is more sensible to use the HM since
it is able to produce optimal solutions while maintaining a
relatively low computation time. However, looking at Figure 2
shows that the computation time for HM increases significantly
if non-quadratic matrices are involved. This is due to the
fact that HM has to generate additional rows or columns to
produce quadratic matrices since it is not able to deal with
non-quadratic problem instances (see section II). VAM on the
other hand can deal with quadratic and non-quadratic matrices
regardless of their size in a relatively small amount of time
which shows VAMs great scalability.

III. IMPROVED VAM FOR NON-QUADRATIC MATRICES
(VAM-NQ)

Prior experiments have shown, that the original VAM is
not able to produce optimal or at least near-optimal results for
non-quadratic matrices (see Figure 3). In fact, the results are
in some cases more than 100 % worse than the optimum. It
was determined that choosing the row or column featuring the
maximum difference from the smaller dimension leads to those
insufficient results. This means for example that if the matrix
contains more columns than rows, choosing a column with
the maximum difference (which is achieved by subtracting
cell values in the smaller dimension) might result in worse
outcomes. The same obviously applies vice versa if there are
more rows than columns. This can be explained with the fact
that the bigger dimension obviously features more values and
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Fig. 1. Mean computational time for ILP (CPLEX-solver), HM and VAM
for quadratic matrices in microseconds (5.000 samples each)
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Fig. 2. Mean computational time for ILP (CPLEX-solver), HM and VAM
for non-quadratic matrices in microseconds (5.000 samples each)

the chance is therefore higher to find a smaller cell value within
those. In order to mitigate the above stated disadvantage of
VAM, an improved version of VAM was developed.

Figure 3 shows that the results produced by VAM start to
deteriorate immediately if the matrix size is increased in only
one dimension, i. e. a non-quadratic matrix is created. It is
evident that while VAM is able to generate optimal solutions
in some cases, the cases where it fails are up to 200 % worse
than the optimum (see Figure 3). The deviations increase
continuously with increasing matrix size, even in rather small
instances. In case of 5× 10 matrices for example, the results
can be twice as bad as the optimum value.
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Fig. 3. Deviation of VAM from the optimal solution with increasing matrix
size (5.000 samples each)

In general, there are two possible versions of non-quadratic
matrices. Either there are more columns than rows or more
rows than columns. The description below is based on the
first case when a matrix contains more columns than rows.
Accordingly, the rows and columns in the description have
to be switched when the second case occurs. VAM-nq solves
allocation matrices featuring more columns than rows by
carrying out the following steps:

1) Calculate the difference between the smallest and the
second-smallest cell value for each row.

2) Select the row featuring the biggest difference. If there is
a tie among rows, choose the row containing the smallest
cell value.

3) Determine the smallest cell value for the selected row and
allocate the corresponding task to a vehicle.

4) Eliminate the corresponding row and column that have
been used for the allocation.

5) Check if there are still vehicles and tasks left to allocate,
and repeat steps 1 - 4 in case that there are.

Upon comparison of the original and the adapted VAM,
it becomes evident that there are some variations and simpli-
fications. For one, VAM-nq considers only the rows in case
that there are more columns than rows (step 1). Accordingly,
only the biggest differences in the rows and the corresponding
smallest cell values are considered (step 2 and 3). Applying
those variations to the second case (more rows than columns)
would mean that only columns, their biggest differences and
smallest cell values are considered in steps 1 through 3. With
Table IV and Table V, the example of subsection II-A is
solved with both versions showing that the proposed VAM-nq
provides significant better results even in small non-quadratic
cases.
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TABLE IV. SOLUTION OF THE ORIGINAL METHOD (VAM) WITH
OBJECTIVE OF 320

cij T1 T2 T3 T4

V1 200 100 400 50
V2 60 80 30 350

V3 210 300 70 150

V4 120 510 340 80

V5 70 80 40 400

TABLE V. SOLUTION OF VAM-NQ WITH OBJECTIVE OF 290

cij T1 T2 T3 T4

V1 200 100 400 50
V2 60 80 30 350

V3 210 300 70 150

V4 120 510 340 80

V5 70 80 40 400

IV. EXPERIMENTS

In order to evaluate the performance of VAM-nq as well as
its ability to reach optimal solutions, experiments have been
carried out by using AnyLogic to generate matrices of different
sizes.

A. Design

The matrices have been randomly generated and randomly
filled with uniformly distributed costs ranging from 0 to 1.400.
Each matrix has been solved 5.000 times to provide meaningful
results. The following overview shows which matrices have
been used to generate and evaluate the corresponding key
performance indicators (KPIs):

• Mean Deviation of VAM from the optimal solution as
seen in Figure 3: 15 non-quadratic 5 × n matrices with
n = {6, . . . , 20}

• Mean Computation Times for VAM, HM and ILP as seen
in Figure 1 and Figure 2:

a) 20 quadratic matrices starting with 10× 10 and rising
to 200× 200 in steps of 10

b) 20 non-quadratic matrices starting with 50 × 50 and
rising to 50× 525 in steps of 25

• Mean Deviation of VAM and VAM-nq from the optimal
solution:

a) 50 non-quadratic 50 × n matrices with n =
{51, . . . , 100}

b) 17 different mixed matrices (5 × 5, 5 × 50, 10 × 10,
10× 20, 10× 30, 10× 40, 20× 20, 10× 60, 20× 60,
30×30, 10×100, 40×40, 50×50, 50×100, 100×100,
100× 200, 100× 300)

B. Results of the Experiments

As can be seen from Figure 4, both the original VAM and
VAM-nq are not always able to produce an optimal solution,
but are instead on average deviating from it. It is also evident
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Fig. 4. Mean deviation of the original VAM and VAM-nq from the optimal
solution for non-quadratic matrices in percent (5.000 samples each)

that in non-quadratic instances (as seen in Figure 4) the
deviation gap between the original VAM and VAM-nq rises
continuously when the size of the non-quadratic matrix is
increased. While the deviation of the original VAM continuous
to grow, the deviation of VAM-nq approaches 0 %, i. e. an
optimal solution is generated more often. This shows clearly
that the proposed method is more suitable to deal with non-
quadratic instances than the original method. Figure 5 shows
the results of experiments performed by using the original
VAM and VAM-nq for different problem instances. In this
case, it is also evident that in non-quadratic instances the
original VAM produces results that are up to 300 % worse
than the corresponding optimal solution. VAM-nq on the other
hand displays almost no deviation and manages on average
to generate an optimal solution in all non-quadratic cases.
However, it is also recognisable that in quadratic matrices the
original VAM is always slightly better than VAM-nq, but the
differences in those cases are negligible.

V. CONCLUSION

Experiments have shown that VAM is substantially faster in
calculating results than HM and CPLEX-solver (ILP) across all
matrix sizes. However, VAM is not able to generate optimum
solutions in large quadratic matrices (starting with approx.
15×15) or small non-quadratic matrices (starting with approx.
5 × 6). In fact, VAM produces insufficient results in those
cases and deviates greatly from the optimum. The proposed
adapted version of VAM, introduced as VAM-nq, is able
to provide slightly worse results than the original VAM for
quadratic instances, but delivers much better results in non-
quadratic instances reaching an optimum solution in most of
the cases. Based on those findings, the authors propose to
use an algorithm that includes both the original VAM and
the improved VAM-nq and which is able to switch between
those two according to the underlying situation. In case that
the underlying matrix is quadratic, the original VAM method
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for different matrix sizes (5.000 samples each)

should be used by the algorithm. For non-quadratic problem
instances however, the algorithm should switch to the improved
VAM-nq.
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Barrera-Cámara (2014). “A Survey of Transportation
Problems”. In: Journal of Applied Mathematics 2014.3,
pp. 1–17.

Dinagar, D. Stephen and R. Keerthivasan (2018). “Solving
Fuzzy Transportation Problem Using Modified Best Candi-
date Method”. In: Journal of Computer and Mathematical
Sciences 9.9, pp. 1179–1186.

Ezekiel, I. D. and S. O. Edeki (2018). “Modified Vogel
approximation method for balanced transportation models
towards optimal option settings”. In: International Journal
of Civil Engineering and Technology 9, pp. 358–366.

Gani, Nagoor and Baskaran (2014). “Improved Vogel’s Ap-
proximation method to Solve Fuzzy Transshipment Prob-
lem”. In: Fuzzy Mathematical Archive 4, pp. 80–87.

Goyal, S. K. (1984). “Improving VAM for Unbalanced
Transportation Problems”. In: Journal of the Operational
Research Society 35.12, pp. 1113–1114.
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