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ABSTRACT 

Probabilistic programming is one of the auspicious, fast-
growing fields of IT research, which is applicable in the 
context of machine learning. Probabilistic programming 
looks into the possibilities of mapping theoretical 
concepts of probability theory onto suitable practical 
programming techniques to handle uncertainty in data. 
This paper provides an overview of the applied concepts 
of probabilistic programming and main groups of 
probabilistic programming tools, as well as outlines the 
theoretical context and open issues of probabilistic 
programming. 
 

KEYWORDS 

Probabilistic system, reasoning pattern, evidence, 
inference, probability query, MAP. 
 
INTRODUCTION 

Probabilistic approach in programming has gained 
considerable attention of academic community over the 
last decade. The area of the research keeps growing, as 
the approach in question explores new ways and 
techniques of massive data processing and decision 
making. As B. Cronin remarks, "probabilistic 
programming languages are in the spotlight".[Cron] M. 
Hicks describes probabilistic programming as "an 
exciting, and growing, area of research", with "people in 
both AI/ML and PL working together and making 
strides".[ Hicks] 
There exist a number of reasons accounting for this rise 
of interest. However, the main of them comes down to 
the fact that constantly growing vast amount of data 
demands new techniques of automation, prediction, 
analysis and modelling. This ongoing search of new 
ways to make IT systems more intelligent and 
sophisticated has boosted the development of the whole 
domain of machine learning. 
Handling uncertainty is one of numerous challenges 
machine learning is facing, as IT systems initially have 
been very restricted by means of processing these 
uncertainties. Applied concepts of probabilistic 
programming could provide machine learning with 
suitable tools for dealing with uncertainty of data, thus, 
enabling ML to combine the available knowledge of the 
subject or situation with mathematical probability rules. 
There exist a number of definitions of what a 
probabilistic program or probabilistic programming in 

general is. Although none of them is universally 
applicable or standardized, most of them tend to share 
substantial similarity.  
Probabilistic programs are defined by A. D. Gordon as 
"usual functional or imperative programs with two 
added constructs: (1) the ability to draw values at 
random from distributions, and (2) the ability to 
condition values of variables in a program via 
observations".[GordHenzNo] F. Wood asserts that 
"probabilistic programs are written with parts not fixed 
in advance that instead take values generated at runtime 
by random sampling procedures".[WoodMeMan] In a 
similar way N. D. Goodman remarks that probabilistic 
programming languages "in their simplest form ... 
extend a well-specified deterministic programming 
language with primitive constructs for random 
choice".[Good]  
Given uncertain or incomplete knowledge the agent 
(whether human or not) is required in most cases to 
make an analysis of reliant data and make an 
assumption of it thus, restoring to some extent the 
missing information. As D. Koller states, "Most tasks 
require a person or an automated system to reason: to 
take the available information and reach conclusions, 
both about what might be true in the world and about 
how to act".[KollFried] According to A. Pfeffer, 
probabilistic programming is a way to create systems, 
supporting decision-making in the face of uncertainty. 
He also points out that probabilistic approach combines 
the knowledge of a situation with the laws of probability 
to determine those unobserved factors that are critical to 
the decision.[Pfeff3] Performing such tasks as 
preliminary analysis of bulk data as well as subsequent 
decision-making in case of incomplete knowledge 
entails an extensive use of applied probabilistic tools 
and techniques. Transferring the latter from the field of 
mathematical reasoning into the field of applied 
informatics implies describing probability distributions 
and providing ways of drawing probabilistic inference. 
This can be performed in the "traditional" imperative 
programming with the help of complex cumbersome 
control flows but as A. D. Gordon noticed, the purpose 
of probabilistic programming is to make probabilistic 
modelling accessible to a programmer without expert 
knowledge of probability theory, i.e. without revealing 
the details of inference implementation.[GordHenzNo] 
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BASIC COMPONENTS OF A PROBABILISTIC 

REASONING SYSTEM. KEY TERMS AND 

DEFINITIONS. 

A probabilistic reasoning system presupposes a coherent 
interaction of its components. Despite the fact that 
approaches to separate out the components of such a 
system differ in the level of abstraction, the underlying 
principles and ideas bear a certain resemblance to each 
other. 
According to A. Pfeffer, components of a probabilistic 
reasoning system generally include a probabilistic 
model, general and evidential knowledge, query and 
inference engine. 
Probabilistic model is an integral part of any 
probabilistic reasoning system encompassing the most 
relevant information about specifics of the particular 
domain in a suitable form for formal processing. A. 
Pffefer describes a probabilistic model as "an encoding 
of general knowledge about a domain in quantitative, 
probabilistic terms". He also stresses that "each model 
has an element of inherent randomness".[Pfeff3] D. 
Koller also points out that a probabilistic model 
"encodes our knowledge of how the system works in a 
computer-readable form".[KollFried] In terms of 
programming a probabilistic model consists of 
variables, dependencies between these variables, 
numerical parameters as values of these variables and 
the so-called functional forms of dependencies (e.g. the 
possibility of modelling as the result of a coin toss with 
a certain weight).[Pfeff2] 
B. Cronin emphasizes the importance of "clean
separation between modelling and inference", as it "can
vastly reduce the time and effort associated with
implementing new models and understanding data".
According to his comparison, probabilistic languages
can "free the developer from the complexities of high-
performance probabilistic inference" the way "high-
level programming languages transformed developer
productivity by abstracting away the details of the
processor and memory architecture".[Cron] In other
words, loose coupling between the model and the
inference engine enables the system to process different
models and thus, serve as a generic tool.
A. Pfeffer differentiates between general knowledge
embracing "what you know to hold true of your domain
in general terms, without considering the details of a
particular situation" and evidence as "specific
information about a particular situation".[Pfeff3]
Query is elucidated as a property of some particular
situation which is looked for. In this interpretation
probabilistic inference is defined as "the process of
using the model to answer queries based on the
evidence".[Pfeff3]
It is also of importance that the relations of all
components of any probabilistic reasoning system
strictly comply with mathematical laws of probability.
General, and evidential information is treated in
"quantitative, probabilistic terms".[Pfeff2]

Figure 1: Probabilistic Reasoning System [Pfeff2] 

A similar approach has been given by D. Koller and N. 
Friedman, who singled out three major components or 
rather layers in any complex reasoning system, namely 
representation, inference and learning. In their 
perception, declarative representation is a reasonable 
encoding of the world model, used to answer the 
questions of interest. Inference is viewed as "answering 
queries using the distribution as our model of the world" 
in particular that process is carried out by "computing 
the posterior probability of some variables given 
evidence on others".[KollFried]  
As far as the stage of learning is concerned, D. Koller 
and N. Friedman assume that models can be constructed 
either with the help of a human expert or automatically, 
"by learning from data a model that provides a good 
approximation to our past experience". Furthermore, 
data-driven approach to model construction with human 
experts setting only guidelines for an automatic supply 
of details, was acknowledged to be more effective 
compared to purely human-constructed.[KollFried] 
A. Pfeffer remarks that as far as learning is concerned,
there are two main things to be done. The most obvious
one is to "learn from the past to improve your general
knowledge" and as a result "to better predict a specific
future situation". However, it is also possible to go
further learning from the past, that is "to improve the
model itself", especially if "a lot of past experiences to
draw on" is available. In this case the goal of a learning
algorithm is to produce a new model, not to answer
queries. The learning algorithm begins with the original
model and updates it based on the experience to produce
the new model. The new model can be used then to
answer queries in the future in a "better-informed" way.
[Pfeff2]
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Figure 2: Probabilistic Reasoning System with a Learning 
Component [Pfeff2] 

 
N. D. Goodman and J. B. Tenenbaum
approach to the study of probabilistic systems on the 
basis of the concept "generative models
represent knowledge about the causal structure of the 
world in a simplified form. A generative model in this 
theory is used to describe some process of the reality, 
which produces observable data. Probabilistic 
generative models are defined as models of processes, 
"which unfold with some amount of randomness
can be used to inquire about these processes with the 
help of probabilistic inference. The main idea here is to 
deal with a process with uncertainty as with 
computation, which involves random choices. The 
simulation of such processes is inevitably connected 
with the degree of belief, as the expected outcomes are 
formalized as probability distribution. [GoodTenen]
 
OVERVIEW OF EXISTING PROBABILISTIC 

SYSTEMS AND TOOLS 

The growing interest in the probabilistic programming 
approach within the academic community has resulted 
in the emergence of new languages and frameworks 
designed and implemented to perform tasks specific to 
the domain of probabilistic programming. The wiki
of existing probabilistic programming systems contains 
more than 20 entries.[WikiPP] 
Despite numerous differences concerning the paradigm 
and implementation, probabilistic languages and 
libraries have much in common. The most important 
similarity between these languages relates to their 
common purpose, namely to "allow programmers to 
freely mix deterministic and stochastic elements
"to specify a stochastic process using syntax that 
resembles modern programming 
languages".[WinStuhGood] 
N. D. Goodman observes that probabilistic languages 
"provide compositional means for describing complex 
probability distributions", "provide generic inference 
engines: tools for performing efficient probabilistic 
inference over an arbitrary program" and points out that 
"in their simplest form, probabilistic programming 
languages extend a well-specified deterministic 
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B. Cronin defines a probabilistic programming language 
as "a high-level language that makes it easy for a 
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and their runtime environment handles 
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D. Poole mentions that 
probabilistic programming languages has been in the 
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• inference 
• learning as the ability to learn probabilities 
from data.[Poole] 
As far as the implementation paradigm is concerne
most authors divide the existing probabilistic 
programming languages and systems into several major 
groups.  
According to A. Pfeffer, some languages belong to the 
logic-based group (PRISM, BLOG, Markov Logic), 
others constitute the groups based on princ
functional (IBAL, Church) and imperative 
(FACTORIE, Picture) programming paradigms. Object
oriented approach is also stated to have several 
advantages in the domain of probabilistic programming 
and Figaro is mentioned as an example of an object
oriented probabilistic language.[Pfeff1]
A. D. Gordon, T. A. Henzinger, A. V. Nori also single 
out three paradigms in the diversity of probabilistic 
languages: imperative, functional, and logical. PROB, 
Infer.NET are mentioned as examples of imperative 
languages, functional paradigm is the base for BUGS, 
IBAL and Church, whereas probabilistic logic 
languages include BLOG, Alchemy, and 
Tuffy.[GordHenzNo] 
It should also be pointed out, that most authors use the 
notions "probabilistic programming language
"probabilistic programming system
To be precise, only a small number of the existing 
probabilistic programming systems are Turing complete 
programming languages such as Venture. Most of them 
present an extension (e.g. Church extending Sche
with probabilistic semantics, ProbLog extending Prolog) 
or a framework (e.g. Infer.NET for C#, PFP for Haskell) 
of an existent general purpose language.
Despite the apparent variety of the existing probabilisti
programming systems (both lan
frameworks), the experimental character of the majority 
of them might present a certain difficulty when used in a 
real-life project for applied rather than academic 
purposes. In this case, pure probabilistic languages are 
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placed in an unfavourable position compared to the 
frameworks and libraries extending general purpose 
languages, because of the restricted number of their 
users as well as lack of community knowledge and 
support. 
 
INTERPRETATION OF PROBABILITY 

The notion of probability belongs to the fundamental 
concepts of probabilistic programming. However, the 
interpretation of probability is not always unambiguous. 
Generally speaking, there exist two common 
interpretations of probability, namely frequentist and 
Bayesian (or subjective). 
D. Koller writes, "The frequentist interpretation views 
probabilities as frequencies of events. More precisely, 
the probability of an event is the fraction of times the 
event occurs if we repeat the experiment indefinitely". 
[KollFried] K. Murphy observes that in frequentist 
interpretation "probabilities represent long run 
frequencies of events". [Murphy] This interpretation 
suits for describing events that can be repeated a 
number of times, like flip of a coin, random choice of a 
card, etc. However, it can become problematic to 
describe the probability of an occurrence of a one-time 
time event in future (e.g. the probability of precipitation 
the next day, stock exchange course tomorrow, etc.). D. 
Koller remarks, "several attempts have been made to 
define the probability for such an event by finding a 
reference class of similar events for which frequencies 
are well defined; however, none of them has proved 
entirely satisfactory". [KollFried] That is when the 
subjective (Bayesian) interpretation comes into play. D. 
Koller describes probabilities as "subjective degrees of 
belief" within this interpretation, observing that "the 
statement P(α) = 0.3 represents a subjective statement 
about one’s own degree of belief that the event α will 
come about". [KollFried] Similarly, K. Murphy notes, 
"in this [Bayesian] view, probability is used to quantify 
our uncertainty about something; hence it is 
fundamentally related to information rather than 
repeated trials", adding that a major advantage of 
Bayesian approach is that it provides means to "model 
our uncertainty about events that do not have long term 
frequencies". [Murphy] 
Although the subjective interpretation enables the 
quantification of uncertainty of events that happen zero 
or one time but can hardly happen repeatedly, the 
approach still possesses certain flaws. D. Koller 
criticizes it for being unable to determine "what exactly 
it means to hold a particular degree of belief". The 
source of the problem in her view is that "we need to 
explain how subjective degrees of beliefs (something 
that is internal to each one of us) are reflected in our 
actions". She suggests employing indirect ways of 
attributing degrees of beliefs (e.g. by a betting game) 
where it is possible. Nevertheless it is also pointed out 
that "both interpretations lead to the same mathematical 
rules" and as a result of that "the technical definitions 
hold for both interpretations". [KollFried] 

K. Murphy also notes that "the basic rules of probability 
theory are the same, no matter which interpretation is 
adopted" and chooses the Bayesian interpretation for his 
research. [Murphy] 
S. J. Russell and P. Norvig single out three main 
interpretations of probabilities, namely frequentist, 
objectivist and subjectivist and describe them as 
follows. According to the frequentist position "the 
numbers can come only from experiments. The 
objectivist view is that probabilities are real aspects of 
the universe - propensities of objects to behave in 
certain ways - rather than being just descriptions of an 
observer's degree of belief. In this view, frequentist 
measurements are attempts to observe the real 
probability value. The subjectivist view describes 
probabilities as a way of characterizing an agent's 
beliefs, rather than having any external physical 
significance. [RussNor] 
S. J. Russell and P. Norvig note, "in the end, even a 
strict frequentist position involves subjective analysis, 
so the difference probably has little practical 
importance". It is also pointed out that the total refusal 
of subjective methods will inevitably result in the 
reference class problem. The reference class problem 
arises when everything is known about an object. That 
makes the object unique and, as a result, devoid of any 
reference class, needed to collect experimental data. 
That was characterised as "a vexing problem in the 
philosophy of science". [RussNor] 
Summing up, it is obvious that the pure frequentist 
approach of defining probabilities is not sufficient in a 
number of cases, where an event cannot take place 
multiple times. Moreover, a certain degree of 
subjectivity is unavoidable at the stage of singling out 
relevant properties of an object to be able to assign it to 
a reference class. No matter which interpretation of 
probabilities is chosen for a particular case, the most 
important thing is compliance with the rules of 
probability theory. 
 
REASONING PATTERNS 

Probabilistic reasoning systems are characterized by a 
high degree of flexibility. The latter is essential, as the 
system should enable to query about different 
aspects/properties of a particular probabilistically 
modelled situation given evidence about other aspects 
or properties. Approaches to differentiation between 
types of inference vary in literature. 
According to A. Pfeffer, there exist three kinds of 
reasoning that probabilistic systems can do: 
1. Predict future events. The evidence will 
typically consist of information about the current 
situation. 
2. Infer the cause of events. The evidence here is 
the same as before, together with an additional fact that 
the event of interest has happened.  
3. Learn from past events to better predict future 
events. The evidence includes all evidence from last 
time (making a note that it was from last time), as well 
as the new information about the current situation. In 
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answering the query, the inference algorithm first infers 
properties of the situation that led to the present. It then 
uses these updated properties to make a prediction. 
The third type of reasoning is characterized by A. 
Pfeffer as "a kind of machine learning".[Pfeff3] 
D. Koller introduces more formal terminology in this 
context. According to her view, queries with predicted 
"downstream" effects of various factors are instances of 
causal reasoning or prediction, whereas queries, where 
one reasons from effects to causes, are instances of 
evidential reasoning or explanation. It must be pointed 
out that D. Koller’s interpretation of the first two types 
of reasoning is equivalent to that of A. Pfeffer. The third 
pattern of reasoning examined by D. Koller is 
intercausal reasoning, "where different causes of the 
same effect can interact". The subtype explaining away 
is treated as an instance of intercausal reasoning. 
However, D. Koller remarks that "explaining away is 
not the only form of intercausal reasoning" and that "the 
influence can go in any direction".[KollFried] 
S. J. Russell and P. Norvig differentiate between four 
distinct types of inference, namely: 

 diagnostic inferences: from effects to causes 
 causal inferences: from causes to effects 
 intercausal inferences: between causes of a 

common effect (also known as explaining 
away) 

 mixed inferences: combining two or more of 
the above.[RussNor] 

N. D. Goodman and J. B. Tenenbaum, however, adopt a 
considerably different approach to differentiation types 
of reasoning. Causal relations are considered to be the 
basic type, encoding the knowledge of the dependencies 
in the real world within causal models. They are 
described as "local, modular, and directed". It is further 
elaborated that a causal structure is local in the sense 
that many related events are not related directly, but 
rather are connected only through causal chains of 
several steps, a series of intermediate and more local 
dependencies. Causal relations are also described as 
modular in the sense that any two arbitrary events in the 
world are most likely to be causally unrelated, or 
independent. Causal relations are always directed, as 
causal influence flows only one way along a causal 
relation.[GoodTenen] 
Causal dependence is opposed to statistical dependence 
or correlation. According to N. D. Goodman and J. B. 
Tenenbaum, two events may be statistically dependent 
even if there is no causal chain running between them, 
as long as they have a common cause (direct or 
indirect). 
e.g. Cough and fever are not causally dependent but 
they are statistically dependent, because they both 
depend on cold.[GoodTenen] 
However, events that are considered to be statistically 
dependent a priori may become independent when 
conditioned on some other observation; this is called 
screening off, or context-specific independence. Also, 
events that are statistically independent initially may 
become dependent when conditioned on other 

observations; this is known as explaining 
away.[GoodTenen] 
Screening off, as stated by N. D. Goodman and J. B. 
Tenenbaum, implies that if the statistical dependence 
between two events A and B is only indirect, mediated 
strictly by one or more other events C, then observing C 
should render A and B statistically independent. This 
can occur if events A and B are connected by one or 
more causal chains, and all such chains run through the 
set of events C, or if C comprises one or more common 
causes of A and B. 
In case of explaining away if two events A and B are 
statistically independent, but they are both causes of one 
or more other events C, then conditioning on C can 
render A and B statistically dependent.[GoodTenen] 
The main types of probabilistic inference can be 
illustrated with the example of a student's work as 
follows: 

 Causal reasoning implies that a hard working 
student is more likely to understand the 
material, which in turn makes them more likely 
to be successful with their homework grade. 

 According to the evidential reasoning, flowing 
in the opposite direction, observing a high 
mark of the student's homework provides 
evidence that the student understood the 
material, which in turn increases the 
probability that the student works hard. 

 The case of mixed reasoning (composed of the 
causal and evidential types) presupposes that if 
a student earned a good exam grade, that 
provides evidence, that they understood the 
material, which in turn makes it more likely 
that they also received a high homework grade. 
However, it must be pointed out that the nodes 
"Exam Grade" and "Homework Grade" are 
conditionally independent given the node 
"Understands Material". In other words, if it is 
already known that the student understands the 
material, then the fact of the student's receiving 
a good exam grade does not deliver any new 
information about the homework grade. 

 In case of intercausal reasoning, also called 
explaining away, if the value of the node 
"Understands Material" (as a common effect) 
is unknown, then values of the nodes "Smart" 
and "Hard working" are independent. 
However, if it is known that "Understands 
Material" is true, then the fact of "Smart" being 
true reduces the probability that "Hard 
working" is true.[CS181-Lec] 
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Figure 3: Student's work [CS181-Lec] 

 
To summarize, causal, evidential, mixed and intercausal 
patterns of reasoning seem to be essential means of 
constructing relationships within a probabilistic 
reasoning system. Although the details of different 
classifications of reasoning patterns (such as naming 
and nesting of elements) tend to vary, the pragmatic 
logic behind them shows a certain degree of similarity. 
 
TYPES OF QUERIES (PROBABILITY QUERIES 

AND MAPS) 

According to D. Koller and N. Friedman, two main 
types of queries can be singled out in the probabilistic 
context, namely probability queries and MAP 
(maximum a posterior) or MPE (Most Probable 
Explanation) queries.[KollFried] K. Karkera’s 
classification adheres to the same types.[Kark] 
D. Koller characterizes probability queries as "perhaps 
the most common query type", which is comprised of 
two types: 

 the evidence: a subset E of random variables in 
the model, and an instantiation e to these 
variables; 

 the query variables: a subset Y of random 
variables in the network.[KollFried] 

According to D. Koller and N. Friedman, the task 
consists in the computation of P(Y | E = e), "that is, the 
posterior probability distribution over the values y of Y, 
conditioned on the fact that � = �. This expression can 
also be viewed as the marginal over Y, in the 
distribution we obtain by conditioning on e".[KollFried] 
However, there exist situations, when the most probable 
result is of interest. That is where MAP queries, also 
known as MPE queries come in play. 
A. Pfeffer describes MPE query as the one to be 
employed, when it is needed "to know the world that is 
the most probable explanation of the data", noting that 
"sometimes, rather than knowing a probability 
distribution over outcomes, you want to know which 
outcomes are the most likely". He underscores that "the 
goal of probabilistic inference in this case can be to find 
out the most likely state of the system", because 
"identifying the most likely state tells you the most 
likely cause of the problems you’re seeing". So, 
according to A. Pfeffer, MPE query is "the query that 

tells you the most likely state of variables in the 
model".[Pfeff2] 
According to L. E. Sucar, "the MPE or abduction 
problem consists in determining the most probable 
values for a subset of variables (explanation subset) in a 
BN given some evidence". It is also underlined that "the 
MPE is not the same as the union of the most probable 
value for each individual variable in the explanation 
subset".[Suc] 
D. Koller considers MAP queries to fulfil "a second 
important type of task" consisting in "finding a high-
probability joint assignment to some subset of 
variables". So, according to D. Koller, MPE query’s aim 
is "to find the MAP assignment - the most likely 
assignment to all of the (non-evidence) variables" or if 
defined more formally: 
if we let W = X − E, our task is to find the most likely 
assignment to the variables in W given the evidence 
� = �: 
MAP(W | e) =  argmax�P(w, e), where, in general, 
argmaxx f(x) represents the value of x for which f(x) is 
maximal.[KollFried] 
Addressing the difference between probability queries 

and MAP queries, D. Koller states, "in a MAP query, 
we are finding the most likely joint assignment to W. To 
find the most likely assignment to a single variable A, 
we could simply compute P(A | e) and then pick the 
most likely value. However, the assignment where each 
variable individually picks its most likely value can be 
quite different from the most likely joint assignment to 
all variables simultaneously".[KollFried] 
Likewise, K. Karkera defines MAP as "the highest 
probability joint assignment to some subsets of 
variables", emphasizes that "the MAP assignment 
cannot be obtained by simply taking the maximum 
probability value in the marginal distribution for each 
random variable" [Kark] and illustrates it with the 
following example. 
e.g. There are two non-independent random variables X 
and Y, where Y is dependent on 
X. The MAP assignment for the random variable X is 
X1 since it has a higher value. 
 

Table 1: Probability Distribution over X [Kark] 
 

X0 X1 
0.4 0.6 

 
Table 2: Probability Distribution P(Y | X) [Kark] 

 
P(Y | X) Y0 Y1 
X0 0.1 0.9 
X1 0.5 0.5 

 
However, the MAP assignment to random variables (X, 
Y) in the joint distribution is (X0, Y1), and the MAP 
assignment to X (X1) is not a part of the MAP of the 
joint assignment. 
 

Table 3: The Joint Distribution over X and Y [Kark] 
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Assignment Value 
X0, Y0 0.04 
X0, Y1 0.36 
X1, Y0 0.3 
X1, Y1 0.3 

 
The marginal MAP query can be regarded as a more 
general query type, which consists of "elements of both 
a conditional probability query and a MAP query". 
[KollFried] 
Thus, with a subset of variables Y of the query and with 
the task to find the most likely assignment to the 
variables in Y given the evidence � = � and � = � −
� − �: 
 ������(� | �) =  �������  ∑ �(�, � | �)�  , marginal 
MAP contains "both summations and 
maximizations".[KollFried] 
 
PROBABILISTIC GRAPHICAL MODELS 

Probabilistic programming needs a formal 
representation of real life situations to perform 
reasoning under uncertainty. Introduction of variables 
denoting the quantified knowledge of the situation, its 
agents and objects is an essential step to enable this kind 
of reasoning. As D. Koller remarks "domains can be 
characterized in terms of a set of random variables, 
where the value of each variable defines an important 
property of the world", emphasizing that "the set of 
possible variables and their values is an important 
design decision, and it depends strongly on the 
questions we may wish to answer about the 
domain".[KollFried] However, the introduction of 
variables formally representing elements of a particular 
situation is not sufficient for building a viable model of 
this situation. It is also the interaction of the elements, 
their mutual influence that needs to be reflected in the 
model. In other words, there should be means of 
encoding dependencies. As A. Pfeffer states, 
"dependencies capture relationships between variables" 
and he singles out two general kinds of them, namely 
"directed dependencies, which express asymmetric 
relationships, and undirected dependencies, which turn 
into symmetric relationships", pointing out that 
"probabilistic models essentially boil down to a 
collection of directed and undirected 
dependencies".[Pfeff2] The two main frameworks that 
are used for this kind of dependency-encoding are 
Bayesian networks and Markov networks, expressing 
directed and undirected dependencies respectively. 
A. Pfeffer treats the Bayesian network as "a 
representation of a probabilistic model consisting of 
three components: 
1. A set of variables with their corresponding 
domains. The domain of a variable specifies which 
values are possible for that variable. 
2. A directed acyclic graph in which each variable 
is a node. 
3. For each variable, a conditional probability 
distribution (CPD) over the variable given its parents. 

A CPD specifies a probability distribution over the child 
variable given the values of its parents. A CPD 
considers every possible assignment of values to the 
parents, when the value of a parent can be any value in 
its domain. For each such assignment, it defines a 
probability distribution over the child. When a variable 
has no parents, the CPD just specifies a single 
probability distribution over the variable".[Pfeff2] 
e.g. The following simple model contains five random 
variables with corresponding CPDs: the student’s 
intelligence, the course difficulty, the grade, the 
student’s SAT score, and the quality of the 
recommendation letter. 
 

 
Figure 4: Student Bayesian network [KollFried] 

 
A Markov network is defined by A. Pfeffer as a 
representation of a probabilistic model consisting of 
three things: 
1. A set of variables. Each variable has a domain, 
which is the set of possible values of the variable. 
2. An undirected graph in which the nodes are 
variables. The edges between nodes are undirected. This 
graph is allowed to have cycles. 
3. A set of potentials, providing the numerical 
parameters of the model.[Pfeff2] 
As opposed to Bayesian networks, where each variable 
is characterised by a CPD, variables in Markov 
networks do not have their own numerical parameters. 
The interaction between variables can be represented 
and quantified with the help of a function called a 
potential. As stated by A. Pfeffer, "When there’s a 
symmetric dependency, some joint states of the 
variables that are dependent on each other are more 
likely than others, all else being equal. The potential 
specifies a weight for each such joint state. Joint states 
with high weights are more likely than joint states with 
low weight, all else being equal. The relative probability 
of the two joint states is equal to the ratio between their 
weights, again all else being equal".[Pfeff2] He defines 
a potential as "simply a function from the values of 
variables to real numbers", stressing the fact that only 
positive real numbers or zero are allowed as the values 
of a potential". Describing the interaction of potential 
functions with the graph structure, A. Pfeffer singles out 
two main rules, namely: 
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1. A potential function can only mention 
variables that are connected in the graph. 
2. If two variables are connected in the graph, 
they must be mentioned together by some potential 
function.[Pfeff2] 
e.g. The following model describes students teamwork 
in pairs. The following pairs can work well together: 
Alice and Bob; Bob and Charles; Charles and Debbie; 
and Debbie and Alice. Each interaction is described 
with a factor. For instance, ��(A, B) means that Alice 
and Bob tend to agree with each other. 
 

 
Figure 5: Students Teamwork Model [KollFried] 

 
INFERENCE: MAIN GROUPS OF INFERENCE 

ALGORITHMS 

The variety of algorithms dealing with the task of 
drawing inference can be examined in different 
perspectives. Thus, for example, A. Pfeffer puts stress 
on differentiating between factored and sampling 
algorithms, which he defines as follows: 

 Factored algorithms - group of algorithms that 
operate on data structures called factors that 
capture the probabilistic model being reasoned 
about (e.g. Variable Elimination (VE) 
algorithm and Belief Propagation (BP) 
algorithm). 

 Sampling algorithms are algorithms creating 
examples of possible worlds from the 
probability distribution and using those 
examples to answer queries (MCMC algo-
rithms).[Pfeff2] 

K. Karkera makes use of juxtaposition of exact 
inference (e.g. Variable Elimination, Tree Algorithms) 
and approximate inference methods (MCMC group), 
parallelly addressing the problem of complexity of 
inference tasks with the words, "even approximate 
inference is NP-hard". He notes, that inference might 
seem to be "a hopeless task, but that is only in the worst 
case" and that generally exact inference can successfully 
serve "to solve certain classes of real-world problems 
(such as Bayesian networks that have a small number of 
discrete random variables)", whereas approximate 
inference is required "for larger problems".[Kark] 
Other scholars, such as D. Koller, S. J. Russel and P. 
Norvig also hold to the classification of inference 
algorithms in two major groups, namely exact inference 
algorithms (with VE and clustering algorithms as 
classical examples) and approximate inference 
algorithms, including a family of sampling methods. 
It must be pointed out that the choice of a suitable 
inference algorithm depends on the structure of the 
model. For example, A. Pfeffer remarks that since 
Variable Elimination "is an exact algorithm that 

perfectly computes the probabilities", one might "think 
that it’s not suitable for real-world applications with 
complex models", which is not the case. Variable 
Elimination is frequently employed, as long as the 
model has the right structure. In particular, it is of 
importance whether variables can be eliminated 
"without adding too many edges to the VE graph, 
leaving the size of the largest clique [set of nodes in a 
graph, which are all connected with each other] in the 
VE graph small and the complexity low". Hidden 
Markov models with a possible application of speech 
recognition and also parse trees in natural language 
processing are among structures, which allow running 
inference with VE.[Pfeff2] 
According to A. Pfeffer, an approximate algorithm 
Belief Propagation has fewer limitations of use 
compared to VE and for a "model with discrete 
variables, BP is a good candidate technique to use". 
Possible applications of BP include Markov networks 
for image analysis and loopy Bayesian networks for 
medical diagnostics. The higher applicability of BP is a 
result of the fact that BP "operates using the moral 
graph (the initial VE graph), without adding edges". 
However, since adding these edges is necessary for 
correct inference, not adding them will result in errors. 
Nevertheless, inference can be approximately correct 
with a certain error margin even when these edges 
aren’t added. [Pfeff2] 
D. Koller also emphasizes the importance of choosing 
the right algorithm, as she addresses the problem of 
inference complexity, noting that "exponential blowup 
of the inference task is (almost certainly) unavoidable in 
the worst case: the problem of inference in graphical 
models is NP-hard, and therefore it probably requires 
exponential time in the worst case. Even worse, 
approximate inference is also NP-hard".[KollFried] 
Nevertheless, she also stresses, "the story does not end 
with this negative result. In general, we care not about 
the worst case, but about the cases that we encounter in 
practice" and that "many real-world applications can be 
tackled very effectively using exact or approximate 
inference algorithms for graphical models".[KollFried] 
 
PROBABILISTIC OBJECT-ORIENTED 

KNOWLEDGE REPRESENTATION 

Object-oriented programming paradigm has become an 
inalienable part of the modern landscape of software 
development. Hence, it is appropriate to consider most 
general concepts of exercising probabilistic 
programming in the context of OOP. 
A. Pfeffer accentuates the following two advantages of 
OOP, namely 

 Providing structure to complex programs. 
Objects are coherent units that capture a set of 
data and behaviors. An object provides a 
uniform interface to these data and behaviors, 
and the internals of the object are encapsulated 
from the rest of the program. This allows the 
programmer to modify the internals of the 
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object in a modular way, without affecting the 
rest of the program. 

 Enabling reuse of code. First, the same class 
code, with all its internal structure, can be 
reused for all instances of the class. Second, 
inheritance makes it possible to reuse common 
aspects of different classes. [Pfeff2] 

As A. Pfeffer perceptively states, OOP paradigm might 
be "even more appropriate for probabilistic models", 
since probabilistic programming deals with building 
models of the real world, which can be naturally 
described "in terms of objects". 
As far as elements of object-oriented modelling are 
concerned, A. Pfeffer mentions "classes that describe 
general data and behaviours" and "instances of those 
classes that contain specific data and instantiations of 
those behaviors", characterizing both as follows: 

 A probabilistic class model defines a general 
process for generating the values of random 
variables. 

 An instance is a specific instantiation of this 
general class model that describes a process to 
generate the values of random variables that 
pertain to this specific instance. [Pfeff2] 

e.g. The following code snippet written in Figaro, Scala 
defines a class CellPhone with 3 attributes. Atomic 
elements of Figaro Flip and Select are used for 
initializing of these attributes. myCellPhone is a 
particular instance of the class named CellPhone. 
class CellPhone { 
 val isOn = Flip(0.90) 
 val withinCoverageArea = Flip(0.93) 
 val connectionQuality = Select(0.6 -> 
"Medium", 0.3 -> "Well", 0.1-> "Poor") 
} 
val myCellPhone = new CellPhone 
A set of probabilistic class definitions provide general 
definitions of random processes that can be reused many 
times for different instances the same way any OOP 
class model can be reused for many different instances 
in the "conventional" programming. 
Thus, according to A.Pfeffer a probabilistic program 
following the concepts of OOP includes three phases: 

 definition of the class models, 
 creation of instances of those classes, 
 reasoning with the instances 

e.g. In the following code snippet, written in Figaro, 
Scala an instance of the importance sampling algorithm 
is created with parameters of 1000 samples and 
targetInformation property to be predicted. The 
algorithm is started explicitly and after all necessary 
actions are completed, the resources taken by algorithm 
are freed and cleaning up is performed. 
val algorithm = Importance(1000, 
model.targetInformation) 
algorithm.start() 
// other actions 
algorithm.kill() 
A. Pfeffer also puts emphasis on the purposes of class 
probability models in a relational probability model: 

1. To describe the structure of the model, 
including the classes in the model, their attributes, and 
relationships between classes. 
2. To define the probabilistic dependencies, 
functional forms, and numerical parameters that govern 
the probabilistic model. 
When defining the dependencies it should be kept in 
mind that "an attribute of an instance can depend on 
other attributes of that instance or on attributes of 
related instances". [Pfeff2] 
In the paper "Object-Oriented Bayesian Networks", D. 
Koller and A. Pfeffer have made an attempt to describe 
an object-oriented Bayesian network (OOBN) language, 
which pursues the purpose of characterizing complex 
subject domains in terms of "interrelated objects". A 
Bayesian network fragment is used "to describe the 
probabilistic relations between the attributes of an 
object", while "these attributes can themselves be 
objects, providing a natural framework for encoding 
part of hierarchies". [KollPfeff] 
An object is considered by D. Koller and A. Pfeffer to 
be the basic element of OOBN, with a standard random 
variable being the most basic object. However, more 
complex objects are also possible in this context. 
Typically, an object possesses a set of attributes, "each 
of which is an object" itself. As D. Koller and A. Pfeffer 
write: "One way of viewing an object is as a collection 
of properties that are associated with some entity in our 
domain. An object will sometimes correspond to a 
physical entity in the world being modelled, but it may 
also represent an abstract entity, or a relationship 
between different entities". The overall assignment of 
all values to the corresponding attributes of a particular 
object is treated by D. Koller and A. Pfeffer as the value 
of this object. Thus, a probabilistic model is defined 
over the assignments of values to an object. It is also 
emphasized that the "probabilistic model must take into 
account the influences of the environment on the 
object". [KollPfeff] 
In regard to the role of the class structure typical of 
OOP, D. Koller and A. Pfeffer observe, "Classes are 
used to provide a reusable probabilistic model which 
can be applied to multiple similar objects. Classes also 
support inheritance of model fragments from a class to a 
subclass, allowing the common aspects of related 
classes to be defined only once". Noting that "complex 
models often involve many similar objects (or attributes 
of objects), whose stochastic functions are essentially 
identical" D. Koller and A. Pfeffer emphasize the 
necessity of defining generic object-oriented Bayesian 
network fragment, which "can be used multiple times in 
defining many similar objects" and could be associated 
with multiple objects. [KollPfeff] 
D. Koller and A. Pfeffer put a particular accent on the 
main advantage OOP "to naturally represent objects that 
are composed of lower level objects", as well as "the 
ability to explicitly represent classes of objects, crucial 
for the incorporation of inheritance into the language", 
stressing that these properties are of crucial importance 
"for large-scale knowledge representation". 
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Nevertheless, D. Koller and A. Pfeffer also address 
particular potential weaknesses of the approach. Thus, 
for instance, it is pointed out that although object-
oriented Bayesian networks allow "to utilize the same 
class hierarchy to define models of a variety of different 
structures, once a model is described in the language, its 
structure is fixed. In particular, the language does not 
allow us to express uncertainty about the identity and 
number of objects in the model and about the 
relationships between them". The inability to "express 
global constraints on a set of objects" is also mentioned 
as a related restriction. The lack of "the expressive 
power to deal suitably with situations that evolve over 
time" is considered by D. Koller and A. Pfeffer to be 
another major restriction. For example, they describe 
objects as "static", as "once an object is defined, its 
properties are determined once and for all (although we 
may still be uncertain about them)", whereas it would be 
preferable "to be able to apply OOBNs to domains 
involving multiple interacting entities whose state 
changes over time". [KollPfeff] 
Still, the undertaken approach permits "a knowledge 
engineer to organize a model in a natural and coherent 
manner", combining three types of knowledge: 
"relevance relationships and conditional probabilities" 
and "organizational structure".[KollPfeff] 
To sum up, object-oriented paradigm places at the 
disposal of probabilistic programming suitable means of 
creating and appropriate structuring models for complex 
domains of human knowledge, as well as means of 
reasoning over these models. Representation of domain 
information in terms of classes, objects and attributes is 
an essential prerequisite for reusable code production. 
However, the question about the most proper ways of 
representation uncertainty and situation changeability 
over time in the context of this approach still remains 
open. 
 
BRIEF OVERVIEW OF FIGARO 

Figaro is one of the most mature and promising 
probabilistic programming tools. It is a Scala open-
source library, which provides rich functionality for 
probabilistic reasoning and is applicable in industrial IT 
projects due to its interoperability with Java. 
Figaro possesses means of construction and procession 
of different kinds of models, which include: 

 directed and undirected models, 
 models in which conditions and constraints are 

expressed by arbitrary Scala functions, 
 models involving interrelated objects, 
 open universe models in which we don’t know 

what or how many objects exist, 
 models involving discrete and continuous 

elements, 
 models in which the elements are rich data 

structures such as trees, 
 models with structured decisions, 
 models with unknown 

parameters.[PfeffRutHowCon] 

Moreover, Figaro also allows a possibility of extending 
its built-in means and creating customary model 
elements and new data structures. 
A number of reasoning algorithms are available in 
Figaro, as for example: 

 exact inference using variable elimination, 
 belief propagation, 
 lazy factored inference for infinite models, 
 importance sampling, 
 Metropolis-Hastings, 
 most probable explanation (MPE), 
 particle filtering, 
 Gibbs sampling, 
 parameter learning using expectation 

maximization.[PfeffRutHowCon] 
New reasoning algorithms can also be created in Figaro 
in addition to the already available built-in algorithms. 
Figaro operates with elements, which are instances of an 
Element class, with a parameter for a value type. An 
atomic element is the simplest element, which is defined 
as "one that does not depend on any other 
elements".[Pfeff2] For example: 

 Flip(0.8) is an Element[Boolean], expressing 
the probabilistic model that produces true with 
probability 0.8 and false with probability 0.2. 

 Select(0.3 -> 0, 0.4 -> 1, 0.6 -> 2) is an 
Element[Int] that represents the probabilistic 
model that produces 0 with probability 0.3, 1 
with probability 0.4, and 2 with probability 0.6. 
The element "Select" can operate between 
elements of any type. 

More complex elements, which can be created from the 
combination of simpler ones, are called compound 
elements. For example, following conditional element is 
a compound:  
If(Flip(0.6), Constant("a"), Select(0.3 -> "b", 0.7 -> 
"c")), 
where Constant("a") is chosen with the probability 0.6, 
Select(0.3 -> "b", 0.7 -> "c") is chosen with the 
probability of 0.4. In other words, value "a" is produced 
with probability 0.6 * 1 = 0.6, value "b" has the 
probability of 0.4 * 0.3 = 0.12, while "c" equals 0.4 * 
0.7 = 0.28. 
Another important feature of Figaro is the ability to 
work with continuous elements 
(library.atomic.continuous package), such as Normal, 
Exponential, Gamma, Beta, and Dirichlet. "Continuous" 
is defined as meaning that "the values lie in a continuum 
with no separation, such as the real numbers".[Pfeff2] 
One of the central concepts in Figaro is the concept of 
Universe, which is a special type of an element 
collection with services for inference algorithms, such 
as memory management and dependency analysis. As a 
result, inference algorithms usually operate on a 
universe. If the universe is not specified explicitly, an 
element is placed in a default universe. [Pfeff2] 
Explicit processing of Universe elements is mostly 
needed "to create dynamic probabilistic programs that 
describe a domain that changes over time". For this 
case, the model is specified in two steps: 
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 initial universe definition, 
 a function from a universe representing the 

distribution at one time point to a universe 
representing the distribution at the next time 
point. [PfeffRutHowCon] 

All in all, Figaro is one of the most viable probabilistic 
tools nowadays, because it provides an extensive 
flexibility defining data models and running inference 
algorithms on them. Figaro's compatibility with Java 
environment allows to integrate its functionality in a 
wide range of IT projects. 
 
CONCLUSION 

Probabilistic programming is one of the most rapidly 
growing areas of IT research nowadays arousing interest 
in academic circles (including research groups in MIT 
and Oxford), acknowledged IT leaders as Microsoft, 
well-established industrial customers and IT community 
all over the world. 
The increasing interest of the international IT 
community to this relatively new direction can be 
accounted by practical applicability of probabilistic 
programming concepts in the context of machine 
learning.  
Probabilistic programming explores possibilities of 
mapping theoretical concepts of probability theory onto 
suitable practical programming techniques to reason 
under uncertainty. 
Probabilistic programmes operate with variables 
holding the quantified knowledge about the constituent 
elements of the modelled situation. There exist two 
general types of dependencies representing relations of 
variables in probabilistic programmes: directed and 
undirected. Bayesian networks are, as a rule, used to 
express directed dependencies, whereas Markov 
networks represent undirected dependencies. 
An active interest of the academic community to the 
probabilistic programming encouraged appearance of 
various tools designed to perform tasks of probabilistic 
inference. These tools include both frameworks of 
already existent general purpose programming 
languages and "purely" probabilistic programming 
systems (many of them not Turing complete). A large 
number of current probabilistic programming tools are 
implemented on the basis of functional programming 
paradigm. However, OOP paradigm is considered to be 
promising in the context of probabilistic programming, 
as it suggests natural mechanisms of modelling the 
reality in terms of objects and enables reuse of code. 
With respect to inference algorithms, there can be 
differentiated two major groups, i.e. exact (e.g. Variable 
Elimination algorithm) and approximate inference 
algorithms (e.g. sampling family). Inference complexity 
makes it especially important to choose the right 
algorithm for each particular situation. 
Although probabilistic programming has managed to 
arouse the interest of the international IT community 
and to achieve positive results in a number of research 
projects worldwide, there are still things to be done for 
probabilistic programming to prove itself as a generally 

accepted standard. In particular, it's needed to work out 
a unified basis for different approaches within 
probabilistic programming and develop "best practices" 
of it. Second, probabilistic programming has to be 
explored and tested in large-scale industrial IT projects, 
outside purely academic environment. 
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