

Applied Concepts of Probabilistic Programming

Olga Ivanova

Business informatics

E-Mail: ollyenn@gmail.com

ABSTRACT

Probabilistic programming is one of the auspicious, fast-
growing fields of IT research, which is applicable in the
context of machine learning. Probabilistic programming
looks into the possibilities of mapping theoretical
concepts of probability theory onto suitable practical
programming techniques to handle uncertainty in data.
This paper provides an overview of the applied concepts
of probabilistic programming and main groups of
probabilistic programming tools, as well as outlines the
theoretical context and open issues of probabilistic
programming.

KEYWORDS

Probabilistic system, reasoning pattern, evidence,
inference, probability query, MAP.

INTRODUCTION

Probabilistic approach in programming has gained
considerable attention of academic community over the
last decade. The area of the research keeps growing, as
the approach in question explores new ways and
techniques of massive data processing and decision
making. As B. Cronin remarks, "probabilistic
programming languages are in the spotlight".[Cron] M.
Hicks describes probabilistic programming as "an
exciting, and growing, area of research", with "people in
both AI/ML and PL working together and making
strides".[Hicks]
There exist a number of reasons accounting for this rise
of interest. However, the main of them comes down to
the fact that constantly growing vast amount of data
demands new techniques of automation, prediction,
analysis and modelling. This ongoing search of new
ways to make IT systems more intelligent and
sophisticated has boosted the development of the whole
domain of machine learning.
Handling uncertainty is one of numerous challenges
machine learning is facing, as IT systems initially have
been very restricted by means of processing these
uncertainties. Applied concepts of probabilistic
programming could provide machine learning with
suitable tools for dealing with uncertainty of data, thus,
enabling ML to combine the available knowledge of the
subject or situation with mathematical probability rules.
There exist a number of definitions of what a
probabilistic program or probabilistic programming in

general is. Although none of them is universally
applicable or standardized, most of them tend to share
substantial similarity.
Probabilistic programs are defined by A. D. Gordon as
"usual functional or imperative programs with two
added constructs: (1) the ability to draw values at
random from distributions, and (2) the ability to
condition values of variables in a program via
observations".[GordHenzNo] F. Wood asserts that
"probabilistic programs are written with parts not fixed
in advance that instead take values generated at runtime
by random sampling procedures".[WoodMeMan] In a
similar way N. D. Goodman remarks that probabilistic
programming languages "in their simplest form ...
extend a well-specified deterministic programming
language with primitive constructs for random
choice".[Good]
Given uncertain or incomplete knowledge the agent
(whether human or not) is required in most cases to
make an analysis of reliant data and make an
assumption of it thus, restoring to some extent the
missing information. As D. Koller states, "Most tasks
require a person or an automated system to reason: to
take the available information and reach conclusions,
both about what might be true in the world and about
how to act".[KollFried] According to A. Pfeffer,
probabilistic programming is a way to create systems,
supporting decision-making in the face of uncertainty.
He also points out that probabilistic approach combines
the knowledge of a situation with the laws of probability
to determine those unobserved factors that are critical to
the decision.[Pfeff3] Performing such tasks as
preliminary analysis of bulk data as well as subsequent
decision-making in case of incomplete knowledge
entails an extensive use of applied probabilistic tools
and techniques. Transferring the latter from the field of
mathematical reasoning into the field of applied
informatics implies describing probability distributions
and providing ways of drawing probabilistic inference.
This can be performed in the "traditional" imperative
programming with the help of complex cumbersome
control flows but as A. D. Gordon noticed, the purpose
of probabilistic programming is to make probabilistic
modelling accessible to a programmer without expert
knowledge of probability theory, i.e. without revealing
the details of inference implementation.[GordHenzNo]

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 1

BASIC COMPONENTS OF A PROBABILISTIC

REASONING SYSTEM. KEY TERMS AND

DEFINITIONS.

A probabilistic reasoning system presupposes a coherent
interaction of its components. Despite the fact that
approaches to separate out the components of such a
system differ in the level of abstraction, the underlying
principles and ideas bear a certain resemblance to each
other.
According to A. Pfeffer, components of a probabilistic
reasoning system generally include a probabilistic
model, general and evidential knowledge, query and
inference engine.
Probabilistic model is an integral part of any
probabilistic reasoning system encompassing the most
relevant information about specifics of the particular
domain in a suitable form for formal processing. A.
Pffefer describes a probabilistic model as "an encoding
of general knowledge about a domain in quantitative,
probabilistic terms". He also stresses that "each model
has an element of inherent randomness".[Pfeff3] D.
Koller also points out that a probabilistic model
"encodes our knowledge of how the system works in a
computer-readable form".[KollFried] In terms of
programming a probabilistic model consists of
variables, dependencies between these variables,
numerical parameters as values of these variables and
the so-called functional forms of dependencies (e.g. the
possibility of modelling as the result of a coin toss with
a certain weight).[Pfeff2]
B. Cronin emphasizes the importance of "clean
separation between modelling and inference", as it "can
vastly reduce the time and effort associated with
implementing new models and understanding data".
According to his comparison, probabilistic languages
can "free the developer from the complexities of high-
performance probabilistic inference" the way "high-
level programming languages transformed developer
productivity by abstracting away the details of the
processor and memory architecture".[Cron] In other
words, loose coupling between the model and the
inference engine enables the system to process different
models and thus, serve as a generic tool.
A. Pfeffer differentiates between general knowledge
embracing "what you know to hold true of your domain
in general terms, without considering the details of a
particular situation" and evidence as "specific
information about a particular situation".[Pfeff3]
Query is elucidated as a property of some particular
situation which is looked for. In this interpretation
probabilistic inference is defined as "the process of
using the model to answer queries based on the
evidence".[Pfeff3]
It is also of importance that the relations of all
components of any probabilistic reasoning system
strictly comply with mathematical laws of probability.
General, and evidential information is treated in
"quantitative, probabilistic terms".[Pfeff2]

Figure 1: Probabilistic Reasoning System [Pfeff2]

A similar approach has been given by D. Koller and N.
Friedman, who singled out three major components or
rather layers in any complex reasoning system, namely
representation, inference and learning. In their
perception, declarative representation is a reasonable
encoding of the world model, used to answer the
questions of interest. Inference is viewed as "answering
queries using the distribution as our model of the world"
in particular that process is carried out by "computing
the posterior probability of some variables given
evidence on others".[KollFried]
As far as the stage of learning is concerned, D. Koller
and N. Friedman assume that models can be constructed
either with the help of a human expert or automatically,
"by learning from data a model that provides a good
approximation to our past experience". Furthermore,
data-driven approach to model construction with human
experts setting only guidelines for an automatic supply
of details, was acknowledged to be more effective
compared to purely human-constructed.[KollFried]
A. Pfeffer remarks that as far as learning is concerned,
there are two main things to be done. The most obvious
one is to "learn from the past to improve your general
knowledge" and as a result "to better predict a specific
future situation". However, it is also possible to go
further learning from the past, that is "to improve the
model itself", especially if "a lot of past experiences to
draw on" is available. In this case the goal of a learning
algorithm is to produce a new model, not to answer
queries. The learning algorithm begins with the original
model and updates it based on the experience to produce
the new model. The new model can be used then to
answer queries in the future in a "better-informed" way.
[Pfeff2]

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 2

Figure 2: Probabilistic Reasoning System with a Learning
Component [Pfeff2]

N. D. Goodman and J. B. Tenenbaum
approach to the study of probabilistic systems on the
basis of the concept "generative models
represent knowledge about the causal structure of the
world in a simplified form. A generative model in this
theory is used to describe some process of the reality,
which produces observable data. Probabilistic
generative models are defined as models of processes,
"which unfold with some amount of randomness
can be used to inquire about these processes with the
help of probabilistic inference. The main idea here is to
deal with a process with uncertainty as with
computation, which involves random choices. The
simulation of such processes is inevitably connected
with the degree of belief, as the expected outcomes are
formalized as probability distribution. [GoodTenen]

OVERVIEW OF EXISTING PROBABILISTIC

SYSTEMS AND TOOLS

The growing interest in the probabilistic programming
approach within the academic community has resulted
in the emergence of new languages and frameworks
designed and implemented to perform tasks specific to
the domain of probabilistic programming. The wiki
of existing probabilistic programming systems contains
more than 20 entries.[WikiPP]
Despite numerous differences concerning the paradigm
and implementation, probabilistic languages and
libraries have much in common. The most important
similarity between these languages relates to their
common purpose, namely to "allow programmers to
freely mix deterministic and stochastic elements
"to specify a stochastic process using syntax that
resembles modern programming
languages".[WinStuhGood]
N. D. Goodman observes that probabilistic languages
"provide compositional means for describing complex
probability distributions", "provide generic inference
engines: tools for performing efficient probabilistic
inference over an arbitrary program" and points out that
"in their simplest form, probabilistic programming
languages extend a well-specified deterministic

Figure 2: Probabilistic Reasoning System with a Learning

N. D. Goodman and J. B. Tenenbaum developed an
approach to the study of probabilistic systems on the

generative models", which
represent knowledge about the causal structure of the
world in a simplified form. A generative model in this

process of the reality,
which produces observable data. Probabilistic
generative models are defined as models of processes,
which unfold with some amount of randomness" and

can be used to inquire about these processes with the
ence. The main idea here is to

deal with a process with uncertainty as with
computation, which involves random choices. The
simulation of such processes is inevitably connected
with the degree of belief, as the expected outcomes are

ty distribution. [GoodTenen]

OVERVIEW OF EXISTING PROBABILISTIC

The growing interest in the probabilistic programming
approach within the academic community has resulted
in the emergence of new languages and frameworks

implemented to perform tasks specific to
the domain of probabilistic programming. The wiki-list
of existing probabilistic programming systems contains

Despite numerous differences concerning the paradigm
obabilistic languages and

libraries have much in common. The most important
similarity between these languages relates to their

allow programmers to
freely mix deterministic and stochastic elements" and

rocess using syntax that
resembles modern programming

N. D. Goodman observes that probabilistic languages
provide compositional means for describing complex

provide generic inference
performing efficient probabilistic

and points out that
in their simplest form, probabilistic programming

specified deterministic

programming language with primitive constructs for
random choice".[Good]
B. Cronin defines a probabilistic programming language
as "a high-level language that makes it easy for a
developer to define probability models and then
these models automatically" and remarks that these kind
of languages "incorporate ran
and their runtime environment handles
inference".[Cron]
D. Poole mentions that
probabilistic programming languages has been in the
context of specific languages"
thorough consideration of specific probabilistic
programming languages and to focus on the design of
them, singling out three additional features, which are
inherent in all probabilistic programming languages:
• conditioning as the ability to make
observations about some variables in the simulation and
to compute the posterior probability of arbitrary
propositions with respect to these observations.
• inference
• learning as the ability to learn probabilities
from data.[Poole]
As far as the implementation paradigm is concerne
most authors divide the existing probabilistic
programming languages and systems into several major
groups.
According to A. Pfeffer, some languages belong to the
logic-based group (PRISM, BLOG, Markov Logic),
others constitute the groups based on princ
functional (IBAL, Church) and imperative
(FACTORIE, Picture) programming paradigms. Object
oriented approach is also stated to have several
advantages in the domain of probabilistic programming
and Figaro is mentioned as an example of an object
oriented probabilistic language.[Pfeff1]
A. D. Gordon, T. A. Henzinger, A. V. Nori also single
out three paradigms in the diversity of probabilistic
languages: imperative, functional, and logical. PROB,
Infer.NET are mentioned as examples of imperative
languages, functional paradigm is the base for BUGS,
IBAL and Church, whereas probabilistic logic
languages include BLOG, Alchemy, and
Tuffy.[GordHenzNo]
It should also be pointed out, that most authors use the
notions "probabilistic programming language
"probabilistic programming system
To be precise, only a small number of the existing
probabilistic programming systems are Turing complete
programming languages such as Venture. Most of them
present an extension (e.g. Church extending Sche
with probabilistic semantics, ProbLog extending Prolog)
or a framework (e.g. Infer.NET for C#, PFP for Haskell)
of an existent general purpose language.
Despite the apparent variety of the existing probabilisti
programming systems (both lan
frameworks), the experimental character of the majority
of them might present a certain difficulty when used in a
real-life project for applied rather than academic
purposes. In this case, pure probabilistic languages are

programming language with primitive constructs for

B. Cronin defines a probabilistic programming language
level language that makes it easy for a

developer to define probability models and then "solve"
these models automatically" and remarks that these kind
of languages "incorporate random events as primitives
and their runtime environment handles

D. Poole mentions that "most of the work in
probabilistic programming languages has been in the

". He tries to abstract from
n of specific probabilistic

programming languages and to focus on the design of
them, singling out three additional features, which are
inherent in all probabilistic programming languages:

conditioning as the ability to make
ables in the simulation and

to compute the posterior probability of arbitrary
propositions with respect to these observations.

learning as the ability to learn probabilities

As far as the implementation paradigm is concerned,
most authors divide the existing probabilistic
programming languages and systems into several major

According to A. Pfeffer, some languages belong to the
based group (PRISM, BLOG, Markov Logic),

others constitute the groups based on principles of
functional (IBAL, Church) and imperative
(FACTORIE, Picture) programming paradigms. Object-
oriented approach is also stated to have several
advantages in the domain of probabilistic programming
and Figaro is mentioned as an example of an object-

iented probabilistic language.[Pfeff1]
A. D. Gordon, T. A. Henzinger, A. V. Nori also single
out three paradigms in the diversity of probabilistic
languages: imperative, functional, and logical. PROB,
Infer.NET are mentioned as examples of imperative

ages, functional paradigm is the base for BUGS,
IBAL and Church, whereas probabilistic logic
languages include BLOG, Alchemy, and

It should also be pointed out, that most authors use the
probabilistic programming language" and

probabilistic programming system" interchangeably.
To be precise, only a small number of the existing

systems are Turing complete
gramming languages such as Venture. Most of them

present an extension (e.g. Church extending Scheme
with probabilistic semantics, ProbLog extending Prolog)
or a framework (e.g. Infer.NET for C#, PFP for Haskell)
of an existent general purpose language.
Despite the apparent variety of the existing probabilistic
programming systems (both languages and
rameworks), the experimental character of the majority

of them might present a certain difficulty when used in a
life project for applied rather than academic

purposes. In this case, pure probabilistic languages are

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 3

placed in an unfavourable position compared to the
frameworks and libraries extending general purpose
languages, because of the restricted number of their
users as well as lack of community knowledge and
support.

INTERPRETATION OF PROBABILITY

The notion of probability belongs to the fundamental
concepts of probabilistic programming. However, the
interpretation of probability is not always unambiguous.
Generally speaking, there exist two common
interpretations of probability, namely frequentist and
Bayesian (or subjective).
D. Koller writes, "The frequentist interpretation views
probabilities as frequencies of events. More precisely,
the probability of an event is the fraction of times the
event occurs if we repeat the experiment indefinitely".
[KollFried] K. Murphy observes that in frequentist
interpretation "probabilities represent long run
frequencies of events". [Murphy] This interpretation
suits for describing events that can be repeated a
number of times, like flip of a coin, random choice of a
card, etc. However, it can become problematic to
describe the probability of an occurrence of a one-time
time event in future (e.g. the probability of precipitation
the next day, stock exchange course tomorrow, etc.). D.
Koller remarks, "several attempts have been made to
define the probability for such an event by finding a
reference class of similar events for which frequencies
are well defined; however, none of them has proved
entirely satisfactory". [KollFried] That is when the
subjective (Bayesian) interpretation comes into play. D.
Koller describes probabilities as "subjective degrees of
belief" within this interpretation, observing that "the
statement P(α) = 0.3 represents a subjective statement
about one’s own degree of belief that the event α will
come about". [KollFried] Similarly, K. Murphy notes,
"in this [Bayesian] view, probability is used to quantify
our uncertainty about something; hence it is
fundamentally related to information rather than
repeated trials", adding that a major advantage of
Bayesian approach is that it provides means to "model
our uncertainty about events that do not have long term
frequencies". [Murphy]
Although the subjective interpretation enables the
quantification of uncertainty of events that happen zero
or one time but can hardly happen repeatedly, the
approach still possesses certain flaws. D. Koller
criticizes it for being unable to determine "what exactly
it means to hold a particular degree of belief". The
source of the problem in her view is that "we need to
explain how subjective degrees of beliefs (something
that is internal to each one of us) are reflected in our
actions". She suggests employing indirect ways of
attributing degrees of beliefs (e.g. by a betting game)
where it is possible. Nevertheless it is also pointed out
that "both interpretations lead to the same mathematical
rules" and as a result of that "the technical definitions
hold for both interpretations". [KollFried]

K. Murphy also notes that "the basic rules of probability
theory are the same, no matter which interpretation is
adopted" and chooses the Bayesian interpretation for his
research. [Murphy]
S. J. Russell and P. Norvig single out three main
interpretations of probabilities, namely frequentist,
objectivist and subjectivist and describe them as
follows. According to the frequentist position "the
numbers can come only from experiments. The
objectivist view is that probabilities are real aspects of
the universe - propensities of objects to behave in
certain ways - rather than being just descriptions of an
observer's degree of belief. In this view, frequentist
measurements are attempts to observe the real
probability value. The subjectivist view describes
probabilities as a way of characterizing an agent's
beliefs, rather than having any external physical
significance. [RussNor]
S. J. Russell and P. Norvig note, "in the end, even a
strict frequentist position involves subjective analysis,
so the difference probably has little practical
importance". It is also pointed out that the total refusal
of subjective methods will inevitably result in the
reference class problem. The reference class problem
arises when everything is known about an object. That
makes the object unique and, as a result, devoid of any
reference class, needed to collect experimental data.
That was characterised as "a vexing problem in the
philosophy of science". [RussNor]
Summing up, it is obvious that the pure frequentist
approach of defining probabilities is not sufficient in a
number of cases, where an event cannot take place
multiple times. Moreover, a certain degree of
subjectivity is unavoidable at the stage of singling out
relevant properties of an object to be able to assign it to
a reference class. No matter which interpretation of
probabilities is chosen for a particular case, the most
important thing is compliance with the rules of
probability theory.

REASONING PATTERNS

Probabilistic reasoning systems are characterized by a
high degree of flexibility. The latter is essential, as the
system should enable to query about different
aspects/properties of a particular probabilistically
modelled situation given evidence about other aspects
or properties. Approaches to differentiation between
types of inference vary in literature.
According to A. Pfeffer, there exist three kinds of
reasoning that probabilistic systems can do:
1. Predict future events. The evidence will
typically consist of information about the current
situation.
2. Infer the cause of events. The evidence here is
the same as before, together with an additional fact that
the event of interest has happened.
3. Learn from past events to better predict future
events. The evidence includes all evidence from last
time (making a note that it was from last time), as well
as the new information about the current situation. In

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 4

answering the query, the inference algorithm first infers
properties of the situation that led to the present. It then
uses these updated properties to make a prediction.
The third type of reasoning is characterized by A.
Pfeffer as "a kind of machine learning".[Pfeff3]
D. Koller introduces more formal terminology in this
context. According to her view, queries with predicted
"downstream" effects of various factors are instances of
causal reasoning or prediction, whereas queries, where
one reasons from effects to causes, are instances of
evidential reasoning or explanation. It must be pointed
out that D. Koller’s interpretation of the first two types
of reasoning is equivalent to that of A. Pfeffer. The third
pattern of reasoning examined by D. Koller is
intercausal reasoning, "where different causes of the
same effect can interact". The subtype explaining away
is treated as an instance of intercausal reasoning.
However, D. Koller remarks that "explaining away is
not the only form of intercausal reasoning" and that "the
influence can go in any direction".[KollFried]
S. J. Russell and P. Norvig differentiate between four
distinct types of inference, namely:

 diagnostic inferences: from effects to causes
 causal inferences: from causes to effects
 intercausal inferences: between causes of a

common effect (also known as explaining
away)

 mixed inferences: combining two or more of
the above.[RussNor]

N. D. Goodman and J. B. Tenenbaum, however, adopt a
considerably different approach to differentiation types
of reasoning. Causal relations are considered to be the
basic type, encoding the knowledge of the dependencies
in the real world within causal models. They are
described as "local, modular, and directed". It is further
elaborated that a causal structure is local in the sense
that many related events are not related directly, but
rather are connected only through causal chains of
several steps, a series of intermediate and more local
dependencies. Causal relations are also described as
modular in the sense that any two arbitrary events in the
world are most likely to be causally unrelated, or
independent. Causal relations are always directed, as
causal influence flows only one way along a causal
relation.[GoodTenen]
Causal dependence is opposed to statistical dependence
or correlation. According to N. D. Goodman and J. B.
Tenenbaum, two events may be statistically dependent
even if there is no causal chain running between them,
as long as they have a common cause (direct or
indirect).
e.g. Cough and fever are not causally dependent but
they are statistically dependent, because they both
depend on cold.[GoodTenen]
However, events that are considered to be statistically
dependent a priori may become independent when
conditioned on some other observation; this is called
screening off, or context-specific independence. Also,
events that are statistically independent initially may
become dependent when conditioned on other

observations; this is known as explaining
away.[GoodTenen]
Screening off, as stated by N. D. Goodman and J. B.
Tenenbaum, implies that if the statistical dependence
between two events A and B is only indirect, mediated
strictly by one or more other events C, then observing C
should render A and B statistically independent. This
can occur if events A and B are connected by one or
more causal chains, and all such chains run through the
set of events C, or if C comprises one or more common
causes of A and B.
In case of explaining away if two events A and B are
statistically independent, but they are both causes of one
or more other events C, then conditioning on C can
render A and B statistically dependent.[GoodTenen]
The main types of probabilistic inference can be
illustrated with the example of a student's work as
follows:

 Causal reasoning implies that a hard working
student is more likely to understand the
material, which in turn makes them more likely
to be successful with their homework grade.

 According to the evidential reasoning, flowing
in the opposite direction, observing a high
mark of the student's homework provides
evidence that the student understood the
material, which in turn increases the
probability that the student works hard.

 The case of mixed reasoning (composed of the
causal and evidential types) presupposes that if
a student earned a good exam grade, that
provides evidence, that they understood the
material, which in turn makes it more likely
that they also received a high homework grade.
However, it must be pointed out that the nodes
"Exam Grade" and "Homework Grade" are
conditionally independent given the node
"Understands Material". In other words, if it is
already known that the student understands the
material, then the fact of the student's receiving
a good exam grade does not deliver any new
information about the homework grade.

 In case of intercausal reasoning, also called
explaining away, if the value of the node
"Understands Material" (as a common effect)
is unknown, then values of the nodes "Smart"
and "Hard working" are independent.
However, if it is known that "Understands
Material" is true, then the fact of "Smart" being
true reduces the probability that "Hard
working" is true.[CS181-Lec]

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 5

Figure 3: Student's work [CS181-Lec]

To summarize, causal, evidential, mixed and intercausal
patterns of reasoning seem to be essential means of
constructing relationships within a probabilistic
reasoning system. Although the details of different
classifications of reasoning patterns (such as naming
and nesting of elements) tend to vary, the pragmatic
logic behind them shows a certain degree of similarity.

TYPES OF QUERIES (PROBABILITY QUERIES

AND MAPS)

According to D. Koller and N. Friedman, two main
types of queries can be singled out in the probabilistic
context, namely probability queries and MAP
(maximum a posterior) or MPE (Most Probable
Explanation) queries.[KollFried] K. Karkera’s
classification adheres to the same types.[Kark]
D. Koller characterizes probability queries as "perhaps
the most common query type", which is comprised of
two types:

 the evidence: a subset E of random variables in
the model, and an instantiation e to these
variables;

 the query variables: a subset Y of random
variables in the network.[KollFried]

According to D. Koller and N. Friedman, the task
consists in the computation of P(Y | E = e), "that is, the
posterior probability distribution over the values y of Y,
conditioned on the fact that � = �. This expression can
also be viewed as the marginal over Y, in the
distribution we obtain by conditioning on e".[KollFried]
However, there exist situations, when the most probable
result is of interest. That is where MAP queries, also
known as MPE queries come in play.
A. Pfeffer describes MPE query as the one to be
employed, when it is needed "to know the world that is
the most probable explanation of the data", noting that
"sometimes, rather than knowing a probability
distribution over outcomes, you want to know which
outcomes are the most likely". He underscores that "the
goal of probabilistic inference in this case can be to find
out the most likely state of the system", because
"identifying the most likely state tells you the most
likely cause of the problems you’re seeing". So,
according to A. Pfeffer, MPE query is "the query that

tells you the most likely state of variables in the
model".[Pfeff2]
According to L. E. Sucar, "the MPE or abduction
problem consists in determining the most probable
values for a subset of variables (explanation subset) in a
BN given some evidence". It is also underlined that "the
MPE is not the same as the union of the most probable
value for each individual variable in the explanation
subset".[Suc]
D. Koller considers MAP queries to fulfil "a second
important type of task" consisting in "finding a high-
probability joint assignment to some subset of
variables". So, according to D. Koller, MPE query’s aim
is "to find the MAP assignment - the most likely
assignment to all of the (non-evidence) variables" or if
defined more formally:
if we let W = X − E, our task is to find the most likely
assignment to the variables in W given the evidence
� = �:
MAP(W | e) = argmax�P(w, e), where, in general,
argmaxx f(x) represents the value of x for which f(x) is
maximal.[KollFried]
Addressing the difference between probability queries

and MAP queries, D. Koller states, "in a MAP query,
we are finding the most likely joint assignment to W. To
find the most likely assignment to a single variable A,
we could simply compute P(A | e) and then pick the
most likely value. However, the assignment where each
variable individually picks its most likely value can be
quite different from the most likely joint assignment to
all variables simultaneously".[KollFried]
Likewise, K. Karkera defines MAP as "the highest
probability joint assignment to some subsets of
variables", emphasizes that "the MAP assignment
cannot be obtained by simply taking the maximum
probability value in the marginal distribution for each
random variable" [Kark] and illustrates it with the
following example.
e.g. There are two non-independent random variables X
and Y, where Y is dependent on
X. The MAP assignment for the random variable X is
X1 since it has a higher value.

Table 1: Probability Distribution over X [Kark]

X0 X1
0.4 0.6

Table 2: Probability Distribution P(Y | X) [Kark]

P(Y | X) Y0 Y1
X0 0.1 0.9
X1 0.5 0.5

However, the MAP assignment to random variables (X,
Y) in the joint distribution is (X0, Y1), and the MAP
assignment to X (X1) is not a part of the MAP of the
joint assignment.

Table 3: The Joint Distribution over X and Y [Kark]

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 6

Assignment Value
X0, Y0 0.04
X0, Y1 0.36
X1, Y0 0.3
X1, Y1 0.3

The marginal MAP query can be regarded as a more
general query type, which consists of "elements of both
a conditional probability query and a MAP query".
[KollFried]
Thus, with a subset of variables Y of the query and with
the task to find the most likely assignment to the
variables in Y given the evidence � = � and � = � −
� − �:
 ������(� | �) = ������� ∑ �(�, � | �)� , marginal
MAP contains "both summations and
maximizations".[KollFried]

PROBABILISTIC GRAPHICAL MODELS

Probabilistic programming needs a formal
representation of real life situations to perform
reasoning under uncertainty. Introduction of variables
denoting the quantified knowledge of the situation, its
agents and objects is an essential step to enable this kind
of reasoning. As D. Koller remarks "domains can be
characterized in terms of a set of random variables,
where the value of each variable defines an important
property of the world", emphasizing that "the set of
possible variables and their values is an important
design decision, and it depends strongly on the
questions we may wish to answer about the
domain".[KollFried] However, the introduction of
variables formally representing elements of a particular
situation is not sufficient for building a viable model of
this situation. It is also the interaction of the elements,
their mutual influence that needs to be reflected in the
model. In other words, there should be means of
encoding dependencies. As A. Pfeffer states,
"dependencies capture relationships between variables"
and he singles out two general kinds of them, namely
"directed dependencies, which express asymmetric
relationships, and undirected dependencies, which turn
into symmetric relationships", pointing out that
"probabilistic models essentially boil down to a
collection of directed and undirected
dependencies".[Pfeff2] The two main frameworks that
are used for this kind of dependency-encoding are
Bayesian networks and Markov networks, expressing
directed and undirected dependencies respectively.
A. Pfeffer treats the Bayesian network as "a
representation of a probabilistic model consisting of
three components:
1. A set of variables with their corresponding
domains. The domain of a variable specifies which
values are possible for that variable.
2. A directed acyclic graph in which each variable
is a node.
3. For each variable, a conditional probability
distribution (CPD) over the variable given its parents.

A CPD specifies a probability distribution over the child
variable given the values of its parents. A CPD
considers every possible assignment of values to the
parents, when the value of a parent can be any value in
its domain. For each such assignment, it defines a
probability distribution over the child. When a variable
has no parents, the CPD just specifies a single
probability distribution over the variable".[Pfeff2]
e.g. The following simple model contains five random
variables with corresponding CPDs: the student’s
intelligence, the course difficulty, the grade, the
student’s SAT score, and the quality of the
recommendation letter.

Figure 4: Student Bayesian network [KollFried]

A Markov network is defined by A. Pfeffer as a
representation of a probabilistic model consisting of
three things:
1. A set of variables. Each variable has a domain,
which is the set of possible values of the variable.
2. An undirected graph in which the nodes are
variables. The edges between nodes are undirected. This
graph is allowed to have cycles.
3. A set of potentials, providing the numerical
parameters of the model.[Pfeff2]
As opposed to Bayesian networks, where each variable
is characterised by a CPD, variables in Markov
networks do not have their own numerical parameters.
The interaction between variables can be represented
and quantified with the help of a function called a
potential. As stated by A. Pfeffer, "When there’s a
symmetric dependency, some joint states of the
variables that are dependent on each other are more
likely than others, all else being equal. The potential
specifies a weight for each such joint state. Joint states
with high weights are more likely than joint states with
low weight, all else being equal. The relative probability
of the two joint states is equal to the ratio between their
weights, again all else being equal".[Pfeff2] He defines
a potential as "simply a function from the values of
variables to real numbers", stressing the fact that only
positive real numbers or zero are allowed as the values
of a potential". Describing the interaction of potential
functions with the graph structure, A. Pfeffer singles out
two main rules, namely:

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 7

1. A potential function can only mention
variables that are connected in the graph.
2. If two variables are connected in the graph,
they must be mentioned together by some potential
function.[Pfeff2]
e.g. The following model describes students teamwork
in pairs. The following pairs can work well together:
Alice and Bob; Bob and Charles; Charles and Debbie;
and Debbie and Alice. Each interaction is described
with a factor. For instance, ��(A, B) means that Alice
and Bob tend to agree with each other.

Figure 5: Students Teamwork Model [KollFried]

INFERENCE: MAIN GROUPS OF INFERENCE

ALGORITHMS

The variety of algorithms dealing with the task of
drawing inference can be examined in different
perspectives. Thus, for example, A. Pfeffer puts stress
on differentiating between factored and sampling
algorithms, which he defines as follows:

 Factored algorithms - group of algorithms that
operate on data structures called factors that
capture the probabilistic model being reasoned
about (e.g. Variable Elimination (VE)
algorithm and Belief Propagation (BP)
algorithm).

 Sampling algorithms are algorithms creating
examples of possible worlds from the
probability distribution and using those
examples to answer queries (MCMC algo-
rithms).[Pfeff2]

K. Karkera makes use of juxtaposition of exact
inference (e.g. Variable Elimination, Tree Algorithms)
and approximate inference methods (MCMC group),
parallelly addressing the problem of complexity of
inference tasks with the words, "even approximate
inference is NP-hard". He notes, that inference might
seem to be "a hopeless task, but that is only in the worst
case" and that generally exact inference can successfully
serve "to solve certain classes of real-world problems
(such as Bayesian networks that have a small number of
discrete random variables)", whereas approximate
inference is required "for larger problems".[Kark]
Other scholars, such as D. Koller, S. J. Russel and P.
Norvig also hold to the classification of inference
algorithms in two major groups, namely exact inference
algorithms (with VE and clustering algorithms as
classical examples) and approximate inference
algorithms, including a family of sampling methods.
It must be pointed out that the choice of a suitable
inference algorithm depends on the structure of the
model. For example, A. Pfeffer remarks that since
Variable Elimination "is an exact algorithm that

perfectly computes the probabilities", one might "think
that it’s not suitable for real-world applications with
complex models", which is not the case. Variable
Elimination is frequently employed, as long as the
model has the right structure. In particular, it is of
importance whether variables can be eliminated
"without adding too many edges to the VE graph,
leaving the size of the largest clique [set of nodes in a
graph, which are all connected with each other] in the
VE graph small and the complexity low". Hidden
Markov models with a possible application of speech
recognition and also parse trees in natural language
processing are among structures, which allow running
inference with VE.[Pfeff2]
According to A. Pfeffer, an approximate algorithm
Belief Propagation has fewer limitations of use
compared to VE and for a "model with discrete
variables, BP is a good candidate technique to use".
Possible applications of BP include Markov networks
for image analysis and loopy Bayesian networks for
medical diagnostics. The higher applicability of BP is a
result of the fact that BP "operates using the moral
graph (the initial VE graph), without adding edges".
However, since adding these edges is necessary for
correct inference, not adding them will result in errors.
Nevertheless, inference can be approximately correct
with a certain error margin even when these edges
aren’t added. [Pfeff2]
D. Koller also emphasizes the importance of choosing
the right algorithm, as she addresses the problem of
inference complexity, noting that "exponential blowup
of the inference task is (almost certainly) unavoidable in
the worst case: the problem of inference in graphical
models is NP-hard, and therefore it probably requires
exponential time in the worst case. Even worse,
approximate inference is also NP-hard".[KollFried]
Nevertheless, she also stresses, "the story does not end
with this negative result. In general, we care not about
the worst case, but about the cases that we encounter in
practice" and that "many real-world applications can be
tackled very effectively using exact or approximate
inference algorithms for graphical models".[KollFried]

PROBABILISTIC OBJECT-ORIENTED

KNOWLEDGE REPRESENTATION

Object-oriented programming paradigm has become an
inalienable part of the modern landscape of software
development. Hence, it is appropriate to consider most
general concepts of exercising probabilistic
programming in the context of OOP.
A. Pfeffer accentuates the following two advantages of
OOP, namely

 Providing structure to complex programs.
Objects are coherent units that capture a set of
data and behaviors. An object provides a
uniform interface to these data and behaviors,
and the internals of the object are encapsulated
from the rest of the program. This allows the
programmer to modify the internals of the

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 8

object in a modular way, without affecting the
rest of the program.

 Enabling reuse of code. First, the same class
code, with all its internal structure, can be
reused for all instances of the class. Second,
inheritance makes it possible to reuse common
aspects of different classes. [Pfeff2]

As A. Pfeffer perceptively states, OOP paradigm might
be "even more appropriate for probabilistic models",
since probabilistic programming deals with building
models of the real world, which can be naturally
described "in terms of objects".
As far as elements of object-oriented modelling are
concerned, A. Pfeffer mentions "classes that describe
general data and behaviours" and "instances of those
classes that contain specific data and instantiations of
those behaviors", characterizing both as follows:

 A probabilistic class model defines a general
process for generating the values of random
variables.

 An instance is a specific instantiation of this
general class model that describes a process to
generate the values of random variables that
pertain to this specific instance. [Pfeff2]

e.g. The following code snippet written in Figaro, Scala
defines a class CellPhone with 3 attributes. Atomic
elements of Figaro Flip and Select are used for
initializing of these attributes. myCellPhone is a
particular instance of the class named CellPhone.
class CellPhone {
 val isOn = Flip(0.90)
 val withinCoverageArea = Flip(0.93)
 val connectionQuality = Select(0.6 ->
"Medium", 0.3 -> "Well", 0.1-> "Poor")
}
val myCellPhone = new CellPhone
A set of probabilistic class definitions provide general
definitions of random processes that can be reused many
times for different instances the same way any OOP
class model can be reused for many different instances
in the "conventional" programming.
Thus, according to A.Pfeffer a probabilistic program
following the concepts of OOP includes three phases:

 definition of the class models,
 creation of instances of those classes,
 reasoning with the instances

e.g. In the following code snippet, written in Figaro,
Scala an instance of the importance sampling algorithm
is created with parameters of 1000 samples and
targetInformation property to be predicted. The
algorithm is started explicitly and after all necessary
actions are completed, the resources taken by algorithm
are freed and cleaning up is performed.
val algorithm = Importance(1000,
model.targetInformation)
algorithm.start()
// other actions
algorithm.kill()
A. Pfeffer also puts emphasis on the purposes of class
probability models in a relational probability model:

1. To describe the structure of the model,
including the classes in the model, their attributes, and
relationships between classes.
2. To define the probabilistic dependencies,
functional forms, and numerical parameters that govern
the probabilistic model.
When defining the dependencies it should be kept in
mind that "an attribute of an instance can depend on
other attributes of that instance or on attributes of
related instances". [Pfeff2]
In the paper "Object-Oriented Bayesian Networks", D.
Koller and A. Pfeffer have made an attempt to describe
an object-oriented Bayesian network (OOBN) language,
which pursues the purpose of characterizing complex
subject domains in terms of "interrelated objects". A
Bayesian network fragment is used "to describe the
probabilistic relations between the attributes of an
object", while "these attributes can themselves be
objects, providing a natural framework for encoding
part of hierarchies". [KollPfeff]
An object is considered by D. Koller and A. Pfeffer to
be the basic element of OOBN, with a standard random
variable being the most basic object. However, more
complex objects are also possible in this context.
Typically, an object possesses a set of attributes, "each
of which is an object" itself. As D. Koller and A. Pfeffer
write: "One way of viewing an object is as a collection
of properties that are associated with some entity in our
domain. An object will sometimes correspond to a
physical entity in the world being modelled, but it may
also represent an abstract entity, or a relationship
between different entities". The overall assignment of
all values to the corresponding attributes of a particular
object is treated by D. Koller and A. Pfeffer as the value
of this object. Thus, a probabilistic model is defined
over the assignments of values to an object. It is also
emphasized that the "probabilistic model must take into
account the influences of the environment on the
object". [KollPfeff]
In regard to the role of the class structure typical of
OOP, D. Koller and A. Pfeffer observe, "Classes are
used to provide a reusable probabilistic model which
can be applied to multiple similar objects. Classes also
support inheritance of model fragments from a class to a
subclass, allowing the common aspects of related
classes to be defined only once". Noting that "complex
models often involve many similar objects (or attributes
of objects), whose stochastic functions are essentially
identical" D. Koller and A. Pfeffer emphasize the
necessity of defining generic object-oriented Bayesian
network fragment, which "can be used multiple times in
defining many similar objects" and could be associated
with multiple objects. [KollPfeff]
D. Koller and A. Pfeffer put a particular accent on the
main advantage OOP "to naturally represent objects that
are composed of lower level objects", as well as "the
ability to explicitly represent classes of objects, crucial
for the incorporation of inheritance into the language",
stressing that these properties are of crucial importance
"for large-scale knowledge representation".

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 9

Nevertheless, D. Koller and A. Pfeffer also address
particular potential weaknesses of the approach. Thus,
for instance, it is pointed out that although object-
oriented Bayesian networks allow "to utilize the same
class hierarchy to define models of a variety of different
structures, once a model is described in the language, its
structure is fixed. In particular, the language does not
allow us to express uncertainty about the identity and
number of objects in the model and about the
relationships between them". The inability to "express
global constraints on a set of objects" is also mentioned
as a related restriction. The lack of "the expressive
power to deal suitably with situations that evolve over
time" is considered by D. Koller and A. Pfeffer to be
another major restriction. For example, they describe
objects as "static", as "once an object is defined, its
properties are determined once and for all (although we
may still be uncertain about them)", whereas it would be
preferable "to be able to apply OOBNs to domains
involving multiple interacting entities whose state
changes over time". [KollPfeff]
Still, the undertaken approach permits "a knowledge
engineer to organize a model in a natural and coherent
manner", combining three types of knowledge:
"relevance relationships and conditional probabilities"
and "organizational structure".[KollPfeff]
To sum up, object-oriented paradigm places at the
disposal of probabilistic programming suitable means of
creating and appropriate structuring models for complex
domains of human knowledge, as well as means of
reasoning over these models. Representation of domain
information in terms of classes, objects and attributes is
an essential prerequisite for reusable code production.
However, the question about the most proper ways of
representation uncertainty and situation changeability
over time in the context of this approach still remains
open.

BRIEF OVERVIEW OF FIGARO

Figaro is one of the most mature and promising
probabilistic programming tools. It is a Scala open-
source library, which provides rich functionality for
probabilistic reasoning and is applicable in industrial IT
projects due to its interoperability with Java.
Figaro possesses means of construction and procession
of different kinds of models, which include:

 directed and undirected models,
 models in which conditions and constraints are

expressed by arbitrary Scala functions,
 models involving interrelated objects,
 open universe models in which we don’t know

what or how many objects exist,
 models involving discrete and continuous

elements,
 models in which the elements are rich data

structures such as trees,
 models with structured decisions,
 models with unknown

parameters.[PfeffRutHowCon]

Moreover, Figaro also allows a possibility of extending
its built-in means and creating customary model
elements and new data structures.
A number of reasoning algorithms are available in
Figaro, as for example:

 exact inference using variable elimination,
 belief propagation,
 lazy factored inference for infinite models,
 importance sampling,
 Metropolis-Hastings,
 most probable explanation (MPE),
 particle filtering,
 Gibbs sampling,
 parameter learning using expectation

maximization.[PfeffRutHowCon]
New reasoning algorithms can also be created in Figaro
in addition to the already available built-in algorithms.
Figaro operates with elements, which are instances of an
Element class, with a parameter for a value type. An
atomic element is the simplest element, which is defined
as "one that does not depend on any other
elements".[Pfeff2] For example:

 Flip(0.8) is an Element[Boolean], expressing
the probabilistic model that produces true with
probability 0.8 and false with probability 0.2.

 Select(0.3 -> 0, 0.4 -> 1, 0.6 -> 2) is an
Element[Int] that represents the probabilistic
model that produces 0 with probability 0.3, 1
with probability 0.4, and 2 with probability 0.6.
The element "Select" can operate between
elements of any type.

More complex elements, which can be created from the
combination of simpler ones, are called compound
elements. For example, following conditional element is
a compound:
If(Flip(0.6), Constant("a"), Select(0.3 -> "b", 0.7 ->
"c")),
where Constant("a") is chosen with the probability 0.6,
Select(0.3 -> "b", 0.7 -> "c") is chosen with the
probability of 0.4. In other words, value "a" is produced
with probability 0.6 * 1 = 0.6, value "b" has the
probability of 0.4 * 0.3 = 0.12, while "c" equals 0.4 *
0.7 = 0.28.
Another important feature of Figaro is the ability to
work with continuous elements
(library.atomic.continuous package), such as Normal,
Exponential, Gamma, Beta, and Dirichlet. "Continuous"
is defined as meaning that "the values lie in a continuum
with no separation, such as the real numbers".[Pfeff2]
One of the central concepts in Figaro is the concept of
Universe, which is a special type of an element
collection with services for inference algorithms, such
as memory management and dependency analysis. As a
result, inference algorithms usually operate on a
universe. If the universe is not specified explicitly, an
element is placed in a default universe. [Pfeff2]
Explicit processing of Universe elements is mostly
needed "to create dynamic probabilistic programs that
describe a domain that changes over time". For this
case, the model is specified in two steps:

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 10

 initial universe definition,
 a function from a universe representing the

distribution at one time point to a universe
representing the distribution at the next time
point. [PfeffRutHowCon]

All in all, Figaro is one of the most viable probabilistic
tools nowadays, because it provides an extensive
flexibility defining data models and running inference
algorithms on them. Figaro's compatibility with Java
environment allows to integrate its functionality in a
wide range of IT projects.

CONCLUSION

Probabilistic programming is one of the most rapidly
growing areas of IT research nowadays arousing interest
in academic circles (including research groups in MIT
and Oxford), acknowledged IT leaders as Microsoft,
well-established industrial customers and IT community
all over the world.
The increasing interest of the international IT
community to this relatively new direction can be
accounted by practical applicability of probabilistic
programming concepts in the context of machine
learning.
Probabilistic programming explores possibilities of
mapping theoretical concepts of probability theory onto
suitable practical programming techniques to reason
under uncertainty.
Probabilistic programmes operate with variables
holding the quantified knowledge about the constituent
elements of the modelled situation. There exist two
general types of dependencies representing relations of
variables in probabilistic programmes: directed and
undirected. Bayesian networks are, as a rule, used to
express directed dependencies, whereas Markov
networks represent undirected dependencies.
An active interest of the academic community to the
probabilistic programming encouraged appearance of
various tools designed to perform tasks of probabilistic
inference. These tools include both frameworks of
already existent general purpose programming
languages and "purely" probabilistic programming
systems (many of them not Turing complete). A large
number of current probabilistic programming tools are
implemented on the basis of functional programming
paradigm. However, OOP paradigm is considered to be
promising in the context of probabilistic programming,
as it suggests natural mechanisms of modelling the
reality in terms of objects and enables reuse of code.
With respect to inference algorithms, there can be
differentiated two major groups, i.e. exact (e.g. Variable
Elimination algorithm) and approximate inference
algorithms (e.g. sampling family). Inference complexity
makes it especially important to choose the right
algorithm for each particular situation.
Although probabilistic programming has managed to
arouse the interest of the international IT community
and to achieve positive results in a number of research
projects worldwide, there are still things to be done for
probabilistic programming to prove itself as a generally

accepted standard. In particular, it's needed to work out
a unified basis for different approaches within
probabilistic programming and develop "best practices"
of it. Second, probabilistic programming has to be
explored and tested in large-scale industrial IT projects,
outside purely academic environment.

LITERATURE

Cronin B. "What is probabilistic programming?"
Retrieved 20.01.2017 from
http://radar.oreilly.com/2013/04/probabilistic-
programming.html

CS181 Lectures 20 - 21 - "Bayesian Networks".
Retrieved 20.01.2017 from http://isites.harvard.edu

Goodman N. D. "The Principles and Practice of
Probabilistic Programming". In Principles of
Programming languages (POPL), 2013

Goodman N. D., Tenenbaum J. B. (electronic).
"Probabilistic Models of Cognition". Retrieved
20.01.2017 from http://probmods.org.

Gordon A. D., Henzinger T. A., Nori A. V.
"Probabilistic Programming". Proc. of the
International Conference on Software Engineering
(ICSE, FOSE track), 2014

Hicks M. "What is probabilistic programming?"
Retrieved 20.01.2017 from http://www.pl-
enthusiast.net/2014/09/08/probabilistic-
programming

Karkera K. R. "Building Probabilistic Graphical Models
with Python". Packt Publishing, 2014.

Koller D., Friedman N. "Probabilistic Graphical
Models. Principles and Techniques". MIT Press,
2009

Pfeffer A., Ruttenberg B., Howard M., O'Connor A.
"Figaro Tutorial". Charles River Analytics.
Retrieved 20.01.2017 from
https://www.cra.com/sites/default/files/pdf/Figaro_T
utorial.pdf

Pfeffer A. "Figaro: An object-oriented probabilistic
programming language". Charles River Analytics
Technical Report, 2009

Pfeffer A. "Practical Probabilistic Programming".
MEAP Edition, Manning Publications, 2015

Pfeffer A. "What Probabilistic Programming is and
How to Use it". Manning Publications. Free Content.
2014

Poole D. "Probabilistic Programming Languages:
Independent Choices and Deterministic Systems". In
R. Dechter, H. Geffner, and J. Y. Halpern, editors,
Heuristics, Probability and Causality: A Tribute to
Judea Pearl. College Publications, 2010

Russell S. J., Norvig P. "Artificial Intelligence. A
Modern Approach". Third Edition. Prentice Hall,
2010

Sucar L. E. "Probabilistic Graphical Models. Principles
and Applications". Springer, 2015

Wiki. "Probabilistic Programming". Retrieved
20.01.2017 from http://probabilistic-
programming.org/wiki/Home

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 11

Wingate D., Stuhlmüller A., Goodman N. D.
"Lightweight Implementations of Probabilistic
Programming Languages Via Transformational
Compilation". Proc. of the 14th Artificial
Intelligence and Statistics, 2011

Wood F., van de Meent J. W., Mansinghka V. "A New
Approach to Probabilistic Programming Inference".
AISTATS, 2014

CONTACT

Olga Ivanova, software developer,
ollyenn@gmail.com

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 5 (2017) 12

