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ABSTRACT 

With the emergence of the fourth industrial revolution 

(Industrie 4.0) of cyber physical systems, intrusion 

detection systems are highly necessary to detect 

industrial network attacks. Recently, the increase in 

application of specialized machine learning techniques 

is gaining critical attention in the intrusion detection 

community. A wide variety of learning techniques 

proposed for different network intrusion detection 

system (NIDS) problems can be roughly classified into 

three broad categories: supervised, semi-supervised 

and unsupervised. In this paper, a comparative study 

of selected learning methods from each of these three 

kinds is carried out. In order to assess these learning 

methods, they are subjected to investigate network 

traffic datasets from an Airplane Cabin Demonstrator. 

In addition to this, the imbalanced classes (normal and 

anomaly classes) that are present in the captured 

network traffic data is one of the most crucial issues to 

be taken into consideration. From this investigation, it 

has been identified that supervised learning methods 

(logistic and lasso logistic regression methods) 

perform better than other methods when historical data 

on former attacks are available. The results of this 

study have also showed that the performance of semi-

supervised learning method (One class support vector 

machine) is comparatively better than unsupervised 

learning method (Isolation Forest) when historical 

data on former attacks are not available. 
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INTRODUCTION 

After the previous three industrial revolutions 

powered by steam engine, mass production with 

invention of electricity, and process automation with 

development of computers and information 

technology, the fourth industrial revolution 

(Industrie 4.0) of cyber physical systems is emerging 

currently (Meshram and Haas, 2017). With the advent 

of fourth industrial revolution of cyber physical 

systems, the high networked production lines within 

companies and the connectivity even with external 

partners will increase over the coming years. Recent 

technological developments of information and 

communication technology (ICT), sensor technology, 

digitalization of manufacturing processes, Internet of 

Things (IoT), Big Data analytics and cloud computing 

enable a huge innovation in industrial production. 

These developments have created an integrated 

information grid which tightly connects systems and 

humans together, which further evolves into a big data 

environment in the industry  (Lee et al., 2014; 

Meshram and Haas, 2017). In these highly networked 

modern production lines, integrated embedded 

intelligence systems and software communicate with 

each other independently. Cloud-based planning 

systems calculate service needs and machine 

utilization. Plant operators monitor and control the 

system remotely, maintenance staff can access and 

change the configuration of the plant from anywhere 

(Lee et al., 2014; Meshram and Haas, 2017; Möller, 

2016; Plattform Industrie 4.0, 2016). In order to evade 

damage and production stoppages, suitable measures 

are needed to prevent security incidents. The Industrie 

4.0 applications in the near future will be extended to 

other sectors where the network attack damages cause 

not only production and property loss (financial loss), 

but also human and environmental loss, e.g. nuclear, 

aviation, defense, spacecraft etc. If the probability of 

network attacks and their resulting damages increase, 

the security risk also increases. One aspect of security 

is the monitoring of network traffic to detect anomalies 

that might be caused by network attacks.  

Network intrusion detection systems (NIDS) refer to 

detection of intrusions in network data (malicious 

activity in network). Intrusions typically occur as 

anomalous patterns though certain techniques model 

the data in a sequential manner and detect anomalous 

subsequences. The primary reason for these anomalies 

is attacks launched by outside attackers who want to 

gain unauthorized access to the network to steal 

information or to disrupt or harm the network. NIDS 

can be broadly classified based on their style of 

detection as follows (Sommer and Paxson, 2010; 

Zhang et al., 2016): (i) misuse-detection systems 

monitor activity with precise descriptions of known 
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malicious behavior and (ii) anomaly-detection systems 

form a view of normal activity and identify deviations 

from that profile. The  anomaly detection systems are 

not targeting to identify malicious behavior but just 

report what has not been seen before, whether normal 

or not. However, the important objective of an 

intrusion detection system is to find attacks. If a 

detector has such a gap, then it does not meet its 

operational expectations. Network traffic often 

exhibits more diversity than people intuitively expect, 

which leads to misconceptions about what and how 

anomaly detection technology can realistically achieve 

in operational environments. One way to reduce this 

diversity of network traffic is to employ aggregation. 

The highly varying network traffic properties over 

small to medium time intervals tend to have greater 

stability when observed over longer time intervals 

(Sommer and Paxson, 2010). Anomaly detection has 

extensive applications in areas such as fraud detection 

for credit cards, intrusion detection for cyber security, 

and military surveillance for enemy activities. 

 

Anomaly detection is usually done by one of the 

following (Mok et al., 2010): 

 Threshold detection, i.e., detecting abnormal 

activity on the server or network. 

 Statistical learning methods with historical 

values. 

 Rule-based methods with expert systems 

(e.g. association rule mining). 

 Non-linear algorithms (e.g. Artificial Neural 

Networks or Genetic Algorithms). 

The first problem about anomaly detection systems, in 

particular NIDS, is the excessive number of reported 

false positives. Although the anomaly detection 

systems do not necessarily make more mistakes , the 

high cost associated with each false negatives (if 

exactly predicted anomalies are assumed as true 

positives, then anomalies that are categorized along 

with normal data are false negatives) is often important 

to consider. Therefore, reducing false negatives must 

be a significant task for any anomaly detection system 

(Garrette, 2006; Leung and Leckie, 2005; Sommer and 

Paxson, 2010). In addition, the characteristics of 

anomaly detection systems that are not well aligned 

with the requirements of machine-learning. These 

include: (i) a very high cost of errors; (ii) lack of 

training data; (iii) a semantic gap between results and 

their operational interpretation; (iv) variability in input 

data; and (v) fundamental difficulties for conducting 

sound evaluation (Sommer and Paxson, 2010). 

 

The machine-learning algorithms perform much better 

at finding similarities than at identifying activity that 

does not belong there, i.e., a classification problem, 

instead of identifying outliers as required by an 

anomaly detection system. According to this view, the 

anomaly detection is a classification problem of two 

classes, “normal” and “anomaly”, and the objective is 

to determine which of the two classes more likely 

matches an observation (Bhuyan et al., 2014; 

Chandola et al., 2009; Dokas et al., 2002). However, a 

basic rule of machine learning is that one needs to train 

a system with samples of both classes, and the amount 

of data instances found in the training set for each class 

should be balanced. On the other hand, the anomaly 

detection tries to find novel attacks with training only 

possible on normal traffic and not on the attacks of 

interest. However, it is not practically beneficial for 

real world problems. Because the assumption of 

training on normal traffic which covers all possible 

cases is not certain. 

 

In this paper, a comparative study of supervised, semi-

supervised, and unsupervised anomaly intrusion 

detection methods is carried out to investigate their 

performance in detecting anomalies. Logistic and 

lasso logistic regression are used for supervised 

anomaly intrusion detection. One class support vector 

machine (OCSVM) is used for semi-supervised 

anomaly intrusion detection. Isolation Forest is used 

for supervised anomaly intrusion detection. The 

proposed approach is evaluated using network 

intrusion dataset generated from Airplane Cabin 

Demonstrator. Our experimental results from the 

proposed anomaly detection techniques are compared.  

 

The paper is organized as follows. In Section 2, the 

related work are discussed as literature. The methods 

and performance measures are presented in Section 3. 

In Section 4, the data are described in experimental 

setup. In Section 5, the results are discussed. Finally, 

the paper is concluded in Section 6. 

 

LITERATURE REVIEW 

In a well-known classification setup, training data is 

used to train a model and test data measures 

performance. However, there are multiple setups 

possible in anomaly detection with reference to the 

labels available in the dataset (training and testing). 

Based on the availability of labels, the anomaly 

detection methods can be classified into supervised, 

semi supervised and unsupervised methods. 

 

Supervised Anomaly Detection 

Techniques trained in supervised mode assume the 

availability of a training data set which has labeled 

instances for a normal as well as an anomaly class. The 

datasets of all the anomaly scenarios of all the devices 

are combined. The data are labeled for their scenarios 

and devices. The anomalies are also labeled. Then, the 

training and testing datasets have to be selected for 

cross validation. A supervised learning method is used 

to model the training dataset. A typical approach in 

such cases is to build a predictive model for normal vs. 

anomaly classes (Görnitz and Rieck, 2013). Then, the 

testing dataset is used to evaluate the model.  

 

Logistic regression and Decision Trees are the most 

commonly used supervised learning algorithms in 

anomaly detection due to its simplicity, high detection 

accuracy and fast adaptation (Hastie et al., 2009). 
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Another well-known supervised learning technique 

used in anomaly detection is Naïve Bayes classifiers. 

Because Naïve Bayes assumes the conditional 

independence of data features, which is often not the 

case for intrusion detection, correlated features may 

degrade its performance (Jha and Ragha, 2013). 

Besides, Support Vector Machine (SVM) is also a 

well-known anomaly detection system which is 

capable of real-time detection, deal with large 

dimensionality of data (Chandola et al., 2009; Jha and 

Ragha, 2013; Manandhar, 2014).  

There are two major practical challenges that arise in 

supervised anomaly detection. First, the anomalous 

instances are far fewer compared to the normal 

instances in the training dataset. Issues that arise due 

to imbalanced class distributions have been addressed 

in the data mining and machine learning literature 

(Bhuyan et al., 2014; Chandola et al., 2009; Dokas et 

al., 2002; Garrette, 2006; Goldstein et al., 2016). 

Second, obtaining accurate and representative labels, 

especially for the anomaly class is usually challenging. 

For most of the applications, the anomalies are not 

known in advance or may occur spontaneously as 

novelties during the test phase. Except for these two 

issues, the supervised anomaly detection problem is 

similar to building predictive models.  

Balancing Imbalanced Classes 

In a classification approach of anomaly detection, the 

classification algorithm attempts to generate a 

classifier which separates two classes. If the classes 

are imbalanced, the anomalies are highly outnumbered 

by normal data. In such cases, huge population of 

normal cases are sorted out to find anomaly cases. 

When a conventional algorithm is used in this 

situation, the algorithms are often biased towards the 

majority class because their loss functions attempt to 

optimize quantities such as error rate, not taking the 

data distribution into consideration. The minority 

cases are treated as outliers of majority class and 

ignored. The algorithm generates a classifier that 

classifies every example as the majority class. There 

are several ways in order to cope up with imbalanced 

classes as follows (Fawcett, 2016): 

i. Balancing the training set

a. Oversampling the minority class

b. Undersampling the majority class

c. Synthesizing the minority class

ii. Adjusting the algorithm

a. Adjusting the decision threshold

b. Adjusting the class weights

c. Identify an algorithm to perform well on

imbalanced data

The undersampling throws away data and results in 

loss of information. The oversampling results in 

duplicating the minority instances that makes 

variables appear to have lower variance than they do. 

The negative consequence of duplication in 

oversampling is that it also duplicates the number of 

errors. The over- and undersampling selects examples 

randomly to adjust their proportions. In order to 

overcome the drawbacks of undersamlping and 

oversampling, a synthetic minority oversampling 

technique (SMOTE) was developed to synthetically 

generate the minority class (Chawla et al., 2002). 

Instead of balancing the training set, the parameters in 

the selected algorithm can also be adjusted to 

overcome the problems of imbalanced classes. When 

the classes are imbalanced, the decision threshold or 

cut-off should not be assigned with the default 0.5. 

Instead, the decision threshold can be increased 

according to the proportion of minority instances in 

total (Fawcett, 2016). Otherwise, the class weights can 

also be assigned based on the proportion of 

imbalanced classes. OCSVM, Isolation Forest, Box 

Drawing algorithm are some of the machine learning 

methods which are frequently used for anomaly 

detection with imbalanced classes (Goh and Rudin, 

2014; Liu et al., 2012; Scholkopf et al., 2000). 

Semi-supervised Anomaly Detection 

This typical approach used in such techniques is to 

build a model for the class corresponding to normal 

behavior, and use the model to identify anomalies in 

the test data. A limited set of anomaly detection 

techniques exists that assume availability of only the 

anomaly instances for training. Such techniques are 

not commonly used, primarily because it is difficult to 

obtain a training data set which covers every possible 

anomalous behavior that can occur in the data. The 

semi-supervised methods are more widely applicable 

when there is no historical accident or attack data. 

Even if the data are available, they are not repeating in 

future. For example, in space craft fault detection, an 

anomaly scenario would signify an accident or failure, 

which is not easy to model. Therefore, it is also called 

as novelty detection, instead of anomaly detection. 

One class support vector machine and support vector 

data description are widely used in case of semi-

supervised anomaly detection and novelty detection 

(Heller et al., 2003; Scholkopf et al., 2000). 

Unsupervised Anomaly Detection 

Techniques that operate in unsupervised mode do not 

require training data, and thus are most widely 

applicable. The datasets of all the anomaly scenarios 

of all the devices are combined. The data are labeled 

for their scenarios and devices. Then, the training and 

testing datasets have to be selected for cross 

validation. An unsupervised learning technique is used 

to model the combined training dataset (Hastie et al., 

2009). The techniques in this category make the 

implicit assumption that normal instances are far more 

frequent than anomalies in the test data. If this 

assumption is not true then such techniques suffer 

from high false alarm rate. Many semi-supervised 

techniques can be adapted to operate in an 

unsupervised mode by using a sample of the unlabeled 

data set as training data. Such adaptation assumes that 

the test data contains very few anomalies and the 

model learnt during training is robust to these few 
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anomalies. Isolation Forest is one of the new entry in 

unsupervised anomaly detection methods and is highly 

suggested to be used in case of imbalanced classes 

(Liu et al., 2012). 

 

Clustering 

The underlying assumption in this approach is that if 

the data are clustered, the normal data belongs to 

clusters while anomalies do not belong to any cluster 

or belong to small clusters. Then to detect anomalies 

the data are clustered, and the centroids and the density 

of each cluster are calculated.  When there is a test data 

point, the distance between the new data point and the 

known large clusters is calculated. If the distance is too 

far, then it is an anomaly (Chandola et al., 2009; 

Laskov et al., 2005; Leung and Leckie, 2005). 

 

Nearest neighbor 

The underlying assumption is that new anomalies are 

closer to known anomalies. This can be implemented 

by using distance to k-anomalies or using the relative 

density of other anomalies near the new data point 

(Gogoi et al., 2011; Leung and Leckie, 2005). 

 

METHODS FOR ANOMALY DETECTION 

In the following subsections, we briefly present the 

classification methods that are used for NIDS in our 

comparative study. 

 

Logistic and Lasso Logistic Regression 

Logistic regression is the most widely used statistical 

model in many fields for binary data (0/1 response) 

prediction. It has been widely applied due to its 

simplicity and great interpretability. As a member of 

generalized linear models it is based on the logit 

function.  

Let us assume that the predicted variable and 

predictors are denoted by Y and X respectively and the 

two classes of interest such as normal and anomaly 

classes are denoted by 1 and 0 respectively.  We wish 

to model the conditional probability that the outcome 

Y is 1, given that the input variables are X. The 

conditional probability is denoted by p(Y=1|X)   which 

we will abbreviate as p(X) since we know we are 

referring to the positive outcome Y = 1. The probability 

of class membership lies between 0 and 1. The 

function assumed in logistic regression is (Hastie et al., 

2009): 

log [
𝑝(𝑋)

1−𝑝(𝑋)
] = 𝛽0 + 𝛽1𝑋1 … + 𝛽𝑖𝑋𝑖  (1) 

One way to frame this problem is to maximize the 

product of these probabilities, often referred to as the 

likelihood and this approach is called maximum 

likelihood estimation: 

𝑙𝑜𝑔 [∏ 𝑝(𝑋𝑖). ∏ (1 − 𝑝(𝑋𝑗))𝑖:𝑌𝑗=0𝑖:𝑌𝑖=1 ] (2) 

where ∏ represents the products over i and j, which 

run over the 1 and 0 classed points respectively. 

Instead of maximizing, the equation (2) can be also 

written as 

𝐿 = −𝑙𝑜𝑔 [∏ 𝑝(𝑋𝑖). ∏ (1 − 𝑝(𝑋𝑗))𝑖:𝑌𝑗=0𝑖:𝑌𝑖=1 ]  (3) 

to minimize the negative log likelihood. 

Lasso regularization works by adding a penalty term 

to the log likelihood function.  In the case of lasso 

regression, the penalty term is |𝛽1| and is minimized 

as (Hastie et al., 2009): 

𝐿 + 𝜆 ∑|𝛽1|                       (4) 

where 𝜆  is a parameter which is usually selected in 

such a way that the resulting model minimizes the out 

of sample error. 

 

OCSVM 

The goal in anomaly detection is to detect anomalies 

by finding a concise description of the normal data, so 

that deviating observations become outliers. Let 

𝑥𝑖(𝑖 = 1,2, … , 𝑛) denote the training examples 

(normal or non-anomalous instances). 𝜙: 𝑋 → 𝐻 is a 

kernel map which transforms the data into an inner 

product space 𝐻. The problem of separating the data 

set from the origin and maximizing the distance from 

the hyperplane to the origin, is essentially the problem 

of optimizing the following quadratic programming 

(Berwick, 1990; Manandhar, 2014; Scholkopf et al., 

2000; Vlasveld, 2013; Zhang et al., 2016): 

𝑚𝑖𝑛
1

2
‖𝑤‖2 +

1

𝑣𝑙
∑ 𝜉𝑖

𝑛

𝑖=1

− 𝜌 

 

    𝑠. 𝑡. (𝑤. 𝜙(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖                (5) 

 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑛, 𝜉𝑖 ≥ 0  
 

where the parameter 𝜈 also serves as an estimate of the 

ratio between anomalies and normal data. In the above 

formula, the parameter 𝜈 is an upper bound on the 

fraction of outliers and is a lower bound of the fraction 

of support vectors relative to the number of training 

examples. This method thus creates a hyperplane 

characterized by 𝑤 and 𝜌 which has maximal distance 

from the origin and, separates all the data points from 

the origin. The decision function for an data point is 

(Vlasveld, 2013): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ((𝑤. 𝜙(𝑥𝑖)) − 𝜌)           (6) 

𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖

𝑛

𝑖=1

𝐾(𝑥, 𝑥𝑖) − 𝜌) 

where 𝛼𝑖 are the Lagrange multipliers and 𝐾(𝑥, 𝑥𝑖) is 

the kernel function. If the kernel function is radial 

basis function, then it is exp (−
‖𝑥−𝑥𝑖‖2

2𝜎2 ). 

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 6 (2017) Seite 13



 

 

 

Isolation Forest 

The basic concept of Isolation Forest is to measure 

susceptibility or proneness of individual data instances 

to be isolated. (Liu et al., 2012; Ting, 2009). Since 

anomalies are few and far from normal instances and 

therefore they are more inclined to isolation. This 

random partitioning produces noticeable shorter paths 

for anomalies. The assumptions are: the fewer 

instances of anomalies result in a smaller number of 

partitions (shorter path length) and the instances with 

distinguishable attribute-values are more likely to be 

separated in early partitioning. Hence, when a forest of 

random trees collectively produce shorter path lengths 

for some particular points, then they are highly likely 

to be anomalies. The important input parameters to the 

Isolation Forest algorithm: are the subsampling size, 

the number of trees and the height of the tree.  

 

According to Liu et al., (2012), the subsampling size 

has to be smaller so that the algorithm is faster and the 

detection accuracy is also better. The depth of the tree 

can be approximately calculated by log2 (number of 

data instances). Sub-sampling size (𝜓)  controls the 

training data size. There is no need to increase the sub-

sampling size beyond the desired value because it 

increases processing time and memory size without 

any gain in detection accuracy (Fayet et al., 2017; Liu 

et al., 2012). According to Liu et al. (2012), the sub-

sampling size of 28 or 256 is enough to perform 

anomaly detection empirically. Number of tree (𝑇) 

controls the ensemble size. According to Liu et al. 

(2012), the path lengths usually converge well before 

t = 100.  

 

Let 𝑥 be a sample, 𝑛 the number of samples on which 

the Isolation Trees are built. Let 𝑓 be the function of 

Isolation Forest 𝑓(𝑡1, 𝑡2, 𝑡2 … 𝑡𝑇). Let ℎ(𝑡, 𝑥) be the 

number of edges of the Isolation Tree 𝑡 between the 

root and the leaf which isolates 𝑥. Let 𝑐(𝑛) be the 

average path length of unsuccessful search in a binary 

search tree. 𝑐(𝑛) estimates the average path length of 

an Isolation Tree. The anomaly score 𝑠 of an instance 

𝑥 can be estimated as follows (Fayet et al., 2017; Liu 

et al., 2012): 

𝑠(𝑥, 𝑓, 𝑛) =  2
−

∑ ℎ(𝑓𝑘
𝑇
𝑘=1 ,𝑥)

𝑇∗𝑐(𝑛)      (7) 

 

Performance Measures 

It is apparent that in this case overall classification 

accuracy is not sufficient as a standard performance 

measure. Metrics such as sensitivity, specificity, 

prevalence, detection rate, and positive prediction 

value have been used to understand the performance 

of the learning algorithm on the anomaly class. A 

confusion matrix as shown in Table 1 is typically used 

to evaluate performance of a machine learning 

algorithm.  

 

 

Table 1: Confusion matrix 
 

Actual 

Non-anomalies 

Actual 

Anomalies 

Predicted 

Non-anomalies 

TN 

(D) 

FN 

(C) 

Predicted 

Anomalies 

FP 

(B) 

TP 

(A) 

 

In this study, it is considered that anomaly class is 

positive and normal (non-anomaly) class is negative. 

Therefore, True Negative (D) is the number of 

correctly predicted non-anomalies. True Positive (A) 

is the number of correctly predicted anomalies. False 

Negative (C) is the number of actual anomalies which 

are predicted as non-anomalies. False Positive (B) is 

the number of non-anomalies which are predicted as 

anomalies. The performance measures considered in 

this study can be calculated using the formulas as 

follows: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴

𝐴 + 𝐶
 (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐷

𝐵 + 𝐷
 (9) 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝐴 + 𝐶

𝐴 + 𝐵 + 𝐶 + 𝐷
 (10) 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝐴

𝐴 + 𝐵 + 𝐶 + 𝐷
 (11) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 =
𝐴

𝐴 + 𝐵
 (12) 

 

EXPERIMENTAL SETUP 

Data Description 

This section discusses the types of available data. 

Anomaly detection methods are usually based on 

volume and features. This study focuses only on 

features of network traffic. The datasets of seven 

devices (D1, D2, D3, D4, D5, D6, and D7) placed on 

dedicated places within the network of an Airplane 

Cabin Network Demonstrator are collected. The 

logical network flow structure of the Airplane Cabin 

Network Demonstrator is shown in Figure 1. The main 

task of these measuring probes is to capture the 

ongoing traffic passing from mirroring ports of the 

network forwarding elements. Each dataset consists of 

a fixed set of basic features as shown in Table 2. There 

are eleven basic features (numerical feature - 2 and 

categorical features - 9). The categorical variables are 

converted to binary variables, according to their levels. 

The anomalies are generated in every dataset based on 

six anomaly scenarios as shown in Table 3.  

 

Research on imbalanced classes often assumes that the 

minority class is around 10 – 20% (Fawcett, 2016; Goh 

and Rudin, 2014). However, in reality, datasets are far 

more imbalanced (less than 2%). Therefore, in this 

study, the anomalies are generated around 2 – 5% on 

an average in each dataset per device. For the 
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supervised approach, the training dataset is labeled 

with anomalies. In the semi-supervised approach, the 

normal dataset without any anomalies is used as a 

training set and the dataset labeled with anomalies is 

used for testing. In the unsupervised approach, the 

labels for anomalies are not used. In this experimental 

study, all the scenarios are considered on all the 

devices.

Loud-
speaker(s)

Camera(s)
Media  
Server

Flight 
Attendant 

Panel

D2

Media

PSU

Light

D3

Media

PSU

Light

D4

Media

PSU

Light

D5

Media

PSU

Light

D6

Media

PSU

Light

D7

Media

PSU

Light

D1

Monitoring / Control

Entertainment

Lighting

 
Figure1: Logical network flows of the Airplane Cabin Network Demonstrator 

 
Table 2: Basic features 

Variables Type 

Time Numerical 

Source IP Categorical 

Source MAC address Categorical 

Source Port Categorical 

Destination IP Categorical 

Destination MAC address Categorical 

Destination Port Categorical 

Protocol Categorical 

Length Numerical 

Service ID Categorical 

Method ID Categorical 
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Table 3: Anomaly scenarios and their details 

No. Scenarios Protocol Anomaly tools Anomaly labels 

1 MAC-Address-Manipulation SOME/IP Fuzzer MAC-Address  

AB:CD:EF:12:34:56 

2 ARP-Spoofing ARP arpspoof MAC-Address 

AB:CD:EF:12:34:56 

3 Unallowed access HTTP Browser MAC-Address 

AB:CD:EF:12:34:56 

4 Light manipulation UDP scapy MAC-Address 

AB:CD:EF:12:34:56 

5 Packet-Replay SOME/IP, HTTP, UDP tcprewrite, tcpreplay VLAN-Tag 

255 dez 

6 Host availability ICMP ping Protocol type ICMP 

 
Table 4: Performance measures of logistic regression 

Device Prevalence 
Detection 

rate 
Sensitivity Specificity 

Positive 

prediction value 

      

D1 0.01499 0.01499 1 0.93409 0.1877 

D2 0.00257 0.00257 1 0.98701 0.1655 

D3 0.00437 0.00437 1 0.97725 0.1616 

D4 0.00246 0.00246 1 0.9874 0.1638 

D5 0.00472 0.00472 1 0.97681 0.1698 

D6 0.00272 0.00272 1 0.98724 0.1762 

D7 0.00479 0.00479 1 0.97706 0.1676 

 

Table 5: Performance measures of lasso logistic regression 

Device Prevalence 
Detection 

rate 
Sensitivity Specificity 

Positive 

prediction value 

      

D1 0.01514 0.01484 0.9801 0.93506 0.18349 

D2 0.00248 0.00247 0.9947 0.98710 0.17247 

D3 0.00217 0.00215 0.9900 0.97693 0.15853 

D4 0.0008 0.0008 1 0.98753 0.17891 

D5 0.00121 0.0012 0.9910 0.97686 0.17134 

D6 0.00047 0.00047 1 0.98745 0.16659 

D7 0.00085 0.00083 0.9758 0.97672 0.16316 

 

Table 6: Performance measures of OCSVM 

Device 𝝂 𝜸 Prevalence 
Detection 

rate 
Sensitivity Specificity 

Positive 

prediction 

value         
D1 0.04 0.002 0.01485 0.01059 0.71356 0.90088 0.09788 

D2 0.05 0.001 0.00261 0.00186 0.71207 0.95944 0.04384 

D3 0.06 0.001 0.00445 0.00276 0.62046 0.93959 0.04386 

D4 0.05 0.001 0.00257 0.00183 0.71007 0.95914 0.04290 

D5 0.06 0.001 0.00466 0.00250 0.53769 0.95360 0.05353 

D6 0.06 0.001 0.00263 0.00201 0.76638 0.95726 0.04509 

D7 0.07 0.001 0.00478 0.00295 0.61799 0.95313 0.05950 

 

Anwendungen und Konzepte der Wirtschaftsinformatik (ISSN: 2296-4592) http://akwi.hswlu.ch Nr. 6 (2017) Seite 16



 

 

Table 7: Performance measures of Isolation Forest 

Device Prevalence 
Detection 

rate 
Sensitivity Specificity 

Positive 

prediction value 

      

D1 0.00102 0.00038 0.37168 0.62881 0.00102 

D2 0.00024 0.00012 0.52000 0.58482 0.00030 

D3 0.00015 0.00004 0.27780 0.62990 0.00012 

D4 0.00012 0.00005 0.41670 0.53930 0.00011 

D5 0.00012 0.00006 0.53850 0.63820 0.00017 

D6 0.00026 0.00016 0.62963 0.56404 0.00038 

D7 0.00020 0.00013 0.65217 0.59073 0.00032 

 
RESULTS AND DISCUSSION 

In this section, the supervised, semi-supervised, and 

unsupervised methods are applied on the datasets 

described in the previous section. In case of supervised 

learning, logistic and lasso logistic regression methods 

are used. For semi-supervised learning, OCSVM is 

used. For unsupervised learning, Isolation Forest is 

used. In supervised learning, the anomaly labels are 

assigned using all the anomaly scenarios and introduced 

as an independent variable (Y). In the application of 

logistic regression method, the training and the testing 

dataset are divided into the ratio of 5:1 respectively. In 

order to balance the imbalanced classes, weights are 

allotted for the independent variable. The weights are 

calculated from the proportion of anomaly instances to 

normal instances.  The results are estimated as 

performance measures and presented in Table 4. The 

sensitivity of this method is impressive and shows that 

correctly predicted anomalies out of actual anomalies, 

which is 100%. The specificity of this method shows 

that 1 - 6% of non-anomalies are detected as anomalies. 

Similar to the logistic regression, in the lasso logistic 

regression application, the weights are allotted to the 

independent variable based on the proportion of 

anomaly instances to normal instances. The 5-fold cross 

validation is used to improve the results. In order to 

apply the lasso logistic regression, glmnet package from 

R is used (Friedman et al., 2017). The results are 

estimated as performance measures and presented in 

Table 5. When compared to the logistic regression, the 

lasso regression is faster during testing period without 

sacrificing much of its performance.  

 

To apply the OCSVM method, e1071 package from R is 

used (Meyer et al., 2017). In this method, the training 

and testing dataset are divided into the ratio of 5:1 

respectively. The normal data instances without 

anomalies are first used as a training dataset to model. 

Then, the unlabeled data instances with anomalies are 

subjected to test the trained model. In OCSVM method, 

the parameters 𝜈 and 𝛾 are selected for tuning to obtain 

the optimal solution. The initial value of parameter 𝜈 is 

the fraction of outliers. As the kernel function is radial 

basis function in OCSVM, the initial value of parameter 

𝛾 can be taken as the reciprocal of number of selected 

features in this study. A low value of 𝛾 improves the 

smoothness of model, while the high value reduces the 

smoothness and tightly fits the training data. The 

selected parameters and performance measures are 

presented in Table 6. The sensitivity of this model shows 

that the method can correctly detect anomalies out of 

actual anomalies around 62 – 77%. Around 5 – 10% of 

non-anomalies are detected as anomalies.  

 

To apply the Isolation Forest, Isolation Forest package 

from R is used (Liu et al., 2012; Ting, 2009). The 

training and testing dataset are divided into the ratio of 

6:1 respectively. Like any other unsupervised learning 

method, Isolation Forest first uses the training dataset 

without label in order to model. Then, the unlabeled data 

instances with anomalies are used to test the trained 

model. The parameters such as number of trees and 

height of tree are selected by tuning in order to obtain 

the optimal solution. In this study, the parameter settings 

such as number of trees, height or depth of tree are 100 

and 8 respectively. The sub-sampling size is taken as one 

third of the total data instances from the training dataset. 

The performance measures are presented in Table 7. 

When compared to the OCSVM, the performance of 

Isolation Forest is poor. However, it has very low 

computational time during test phase. The complexity of 

Isolation Forest increases with the increase in number of 

categorical variables and their levels. According to the 

sensitivity, this method can detect anomalies out of 

actual anomalies around 30 – 65%. More than 40% of 

non-anomalies are predicted as anomalies.  

 

The performance of supervised learning methods such 

as logistic and lasso logistic regressions is very good. In 

case of supervised learning methods, the accuracy of 

detecting TP is almost 100% without sacrificing the 

accuracy of detecting TN. However, the provision of 

anomaly labels in the training dataset is highly 

impractical. Therefore, the semi-supervised and 

unsupervised learning methods are more reasonable in 

practice. Moreover, the main challenge of anomaly 

intrusion detection is to minimize false negatives when 

the attacks are novel and/or unknown. In this study, the 

OCSVM method fulfills the above mentioned task and 

is also effective in reducing false negative rate with a 
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desirable false positive rate. On the other hand, the 

Isolation Forest is not effective in detecting both TN and 

TP, when compared to OCSVM.  

 

CONCLUSION 

Our experiments demonstrate that the supervised 

learning methods significantly outperform the 

unsupervised ones if the test data contains no unknown 

attacks. Furthermore, among the supervised methods 

such as logistic and lasso logistic regression, the best 

performance is achieved by logistic regression, but its 

anomaly detection using testing dataset is slower than 

lasso logistic regression. On an average, the lasso 

logistic regression has better positive prediction value 

than logistic regression, i.e., the false alarms are less. In 

the presence of unknown attacks in the test data, the 

performance of unsupervised learning methods will be 

significant definitely. The performance of unsupervised 

learning will not degrade by the unknown attacks. In this 

study, among unsupervised learning methods, the 

performance of OCSVM is better than Isolation Forest. 

The findings from this study suggest that the semi-

supervised and unsupervised methods, which do not 

require a laborious unreasonable labelling process, clear 

forerunners for practical purposes if unknown attacks 

can be expected. As a future research, there is need to 

improve Isolation Forest, when it handles more 

categorical variables with a higher number of levels. In 

case of imbalanced classes, an emerging field of semi-

supervised learning, i.e., novelty detection, also offers a 

promising direction of future research NIDS especially 

in the fields were highly interconnected components 

produce a massive amount of data, e.g. in future 

Industrie 4.0 applications.  
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